3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Correlation of Air Pollution and Prevalence of Acute Pulmonary Embolism in Northern Thailand

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The relationship between the level of air pollution and acute pulmonary embolism (APE) has had inconsistent results. Objective: This study aimed to analyze the relationship between the high level of air pollution exposure and APE. Methods: A ten-year retrospective cohort, single-center study was performed on patients diagnosed with APE from October 2010 to December 2020. The association between air pollution and monthly APE case diagnosis was analyzed. Results: A total number of 696 patients was included. The effect of every 10 µg/m3 increment of particulate matters with an aerodynamic diameter < 10 µm (PM10) on total monthly APE cases (unprovoked PE and provoked PE) was increased significantly at lag 4, 5 and 6 months with adjusted RR (95% CI) of 1.06 (1.01, 1.12), p = 0.011, 1.07 (1.01, 1.13), p = 0.021 and 1.06 (1.01, 1.12), p = 0.030, respectively. Adjusted RR for APE was significantly increased for PM10 in the second tertile ((adjusted RR (95% CI) 1.76 (1.12, 2.77)), p = 0.014. Conclusions: We conclude that PM10 is associated with an increased prevalence of APE cases. The policy for tighter control of air pollution in our country is needed to reduce the impact of air pollutants on people’s health.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Air Pollution and Cardiovascular Disease

            Fine particulate matter <2.5 μm (PM2.5) air pollution is the most important environmental risk factor contributing to global cardiovascular (CV) mortality and disability. Short-term elevations in PM2.5 increase the relative risk of acute CV events by 1% to 3% within a few days. Longer-term exposures over several years increase this risk by a larger magnitude (∼10%), which is partially attributable to the development of cardiometabolic conditions (e.g., hypertension and diabetes mellitus). As such, ambient PM2.5 poses a major threat to global public health. In this review, the authors provide an overview of air pollution and health, including assessment of exposure, impact on CV outcomes, mechanistic underpinnings, and impact of air pollution reduction strategies to mitigate CV risk. The review concludes with future challenges, including the inextricable link between air pollution and climate change, and calls for large-scale trials to allow the promulgation of formal evidence-based recommendations to lower air pollution-induced health risks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases.

              Evidence on the health risks associated with short-term exposure to fine particles (particulate matter 200,000) with 11.5 million Medicare enrollees (aged >65 years) living an average of 5.9 miles from a PM2.5 monitor. Daily counts of county-wide hospital admissions for primary diagnosis of cerebrovascular, peripheral, and ischemic heart diseases, heart rhythm, heart failure, chronic obstructive pulmonary disease, and respiratory infection, and injuries as a control outcome. There was a short-term increase in hospital admission rates associated with PM2.5 for all of the health outcomes except injuries. The largest association was for heart failure, which had a 1.28% (95% confidence interval, 0.78%-1.78%) increase in risk per 10-microg/m3 increase in same-day PM2.5. Cardiovascular risks tended to be higher in counties located in the Eastern region of the United States, which included the Northeast, the Southeast, the Midwest, and the South. Short-term exposure to PM2.5 increases the risk for hospital admission for cardiovascular and respiratory diseases.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                IJERGQ
                International Journal of Environmental Research and Public Health
                IJERPH
                MDPI AG
                1660-4601
                October 2022
                October 06 2022
                : 19
                : 19
                : 12808
                Article
                10.3390/ijerph191912808
                36232104
                9830180a-8007-48da-9022-56f80a3e264e
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article