1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Compound Danshen Dripping Pills Prevented Leptin Deficiency-Induced Hepatic ER Stress, Stimulated Autophagy, and Improved Insulin Resistance of ob/ob Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Compound Danshen dripping pills (CDDP) is widely used for the treatment of coronary arteriosclerosis and ischemic heart diseases for decades of years. In our study, we interestingly discovered the effects and mechanism of CDDP on insulin resistance that increase the risk factor of cardiovascular diseases. Effects of CDDP on fasting blood glucose, the insulin tolerance test (ITT), the oral glucose tolerance test (OGTT), hepatic function, and underlying mechanism were analyzed in ob/ob mice. CDDP was found improving the impaired insulin signal sensitivity of ob/ob mice by ameliorating insulin and glucose tolerance, improving hepatic phosphorylation of the insulin receptor substrate-1 on Ser 307 (pIRS1) of ob/ob mice, and restoring hepatic function by decreasing serum ALT and AST, which increased in ob/ob mice serum. Decreasing hepatic phosphorylation of pancreatic ER kinase (PERK) and inositol-requiring enzyme-1 (IRE1) regulating hepatic ER stress in the liver of ob/ob mice were increased by CDDP. Furthermore, CDDP was also found stimulating ob/ob mice hepatic autophagy by increasing the expression of Beclin1 and LC3B, while decreasing P62 expression. Our study discovered an important role of CDDP on improving ob/ob mice insulin resistance and liver function probably through relieving hepatic ER stress and stimulating hepatic autophagy, which would broaden the application value and provide more benefits for treating cardiovascular patients. This trial is registered with NCT01659580.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin resistance and hyperglycaemia in cardiovascular disease development.

          The prevalence of diabetes mellitus will likely increase globally from 371 million individuals in 2013 to 552 million individuals in 2030. This epidemic is mainly attributable to type 2 diabetes mellitus (T2DM), which represents about 90-95% of all cases. Cardiovascular disease is the leading cause of mortality among individuals with diabetes mellitus, and >50% of patients will die from a cardiovascular event-especially coronary artery disease, but also stroke and peripheral vascular disease. Classic risk factors such as elevated levels of LDL cholesterol and blood pressure, as well as smoking, are risk factors for adverse cardiovascular events in patients with type 1 diabetes mellitus (T1DM) and T2DM to a similar degree as they are in healthy individuals. Patients with T1DM develop insulin resistance in the months after diabetes mellitus diagnosis, and patients with T2DM typically develop insulin resistance before hyperglycaemia occurs. Insulin resistance and hyperglycaemia, in turn, further increase the risk of adverse cardiovascular events. This Review discusses the mechanisms by which T1DM and T2DM can lead to cardiovascular disease and how these relate to the risk factors for coronary artery disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin.

            Autophagy is essential for maintaining both survival and health of cells. Autophagy is normally suppressed by amino acids and insulin. It is unclear what happens to the autophagy activity in the presence of insulin resistance and hyperinsulinemia. In this study, we examined the autophagy activity in the presence of insulin resistance and hyperinsulinemia and the associated mechanism. Insulin resistance and hyperinsulinemia were induced in mice by a high fat diet, followed by measurements of autophagy markers. Our results show that autophagy was suppressed in the livers of mice with insulin resistance and hyperinsulinemia. Transcript levels of some key autophagy genes were also suppressed in the presence of insulin resistance and hyperinsulinemia. Conversely, autophagy activity was increased in the livers of mice with streptozotocin-induced insulin deficiency. Levels of vps34, atg12, and gabarapl1 transcripts were elevated in the livers of mice with insulin deficiency. To study the mechanism, autophagy was induced by nutrient deprivation or glucagon in cultured hepatocytes in the presence or absence of insulin. Autophagy activity and transcript levels of vps34, atg12, and gabarapl1 genes were reduced by insulin. The effect of insulin was largely prevented by overexpression of the constitutive nuclear form of FoxO1. Importantly, autophagy of mitochondria (mitophagy) in cultured cells was suppressed by insulin in the presence of insulin resistance. Together, our results show that autophagy activity and expression of some key autophagy genes were suppressed in the presence of insulin resistance and hyperinsulinemia. Insulin suppression of autophagy involves FoxO1-mediated transcription of key autophagy genes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found
              Is Open Access

              FXR Inhibits Endoplasmic Reticulum Stress-Induced NLRP3 Inflammasome in Hepatocytes and Ameliorates Liver Injury

                Bookmark

                Author and article information

                Contributors
                Journal
                Evid Based Complement Alternat Med
                Evid Based Complement Alternat Med
                ECAM
                Evidence-based Complementary and Alternative Medicine : eCAM
                Hindawi
                1741-427X
                1741-4288
                2020
                3 July 2020
                3 July 2020
                : 2020
                : 5368657
                Affiliations
                1NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin 300134, China
                2Cargill Feed (Tianjin) Co., Ltd., No. 6 Huifeng Road, Wuqing Developing Zone, Tianjin 301700, China
                Author notes

                Academic Editor: Kuttulebbai N. S. Sirajudeen

                Author information
                https://orcid.org/0000-0002-0100-4084
                https://orcid.org/0000-0001-9629-9593
                Article
                10.1155/2020/5368657
                7354663
                9836ad34-a7df-457b-b98e-0c50b8207a74
                Copyright © 2020 Yanan Shi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 December 2019
                : 17 April 2020
                : 22 May 2020
                Funding
                Funded by: Research Project of Tianjin Municipal Commission of Health and Family Planning on Traditional Chinese Medicine and Combination of Chinese Traditional and Western Medicine
                Award ID: 2017168
                Funded by: Natural Science Foundation of Tianjin City
                Award ID: 18JCYBJC25500
                Funded by: National Natural Science Foundation of China
                Award ID: 81800767
                Award ID: 81502659
                Funded by: Science and Technology Development Fund of Tianjin Education Commission for Higher Education
                Award ID: 2017KJ211
                Categories
                Research Article

                Complementary & Alternative medicine
                Complementary & Alternative medicine

                Comments

                Comment on this article