23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Developing a spatial-statistical model and map of historical malaria prevalence in Botswana using a staged variable selection procedure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Several malaria risk maps have been developed in recent years, many from the prevalence of infection data collated by the MARA (Mapping Malaria Risk in Africa) project, and using various environmental data sets as predictors. Variable selection is a major obstacle due to analytical problems caused by over-fitting, confounding and non-independence in the data. Testing and comparing every combination of explanatory variables in a Bayesian spatial framework remains unfeasible for most researchers. The aim of this study was to develop a malaria risk map using a systematic and practicable variable selection process for spatial analysis and mapping of historical malaria risk in Botswana.

          Results

          Of 50 potential explanatory variables from eight environmental data themes, 42 were significantly associated with malaria prevalence in univariate logistic regression and were ranked by the Akaike Information Criterion. Those correlated with higher-ranking relatives of the same environmental theme, were temporarily excluded. The remaining 14 candidates were ranked by selection frequency after running automated step-wise selection procedures on 1000 bootstrap samples drawn from the data. A non-spatial multiple-variable model was developed through step-wise inclusion in order of selection frequency. Previously excluded variables were then re-evaluated for inclusion, using further step-wise bootstrap procedures, resulting in the exclusion of another variable. Finally a Bayesian geo-statistical model using Markov Chain Monte Carlo simulation was fitted to the data, resulting in a final model of three predictor variables, namely summer rainfall, mean annual temperature and altitude. Each was independently and significantly associated with malaria prevalence after allowing for spatial correlation. This model was used to predict malaria prevalence at unobserved locations, producing a smooth risk map for the whole country.

          Conclusion

          We have produced a highly plausible and parsimonious model of historical malaria risk for Botswana from point-referenced data from a 1961/2 prevalence survey of malaria infection in 1–14 year old children. After starting with a list of 50 potential variables we ended with three highly plausible predictors, by applying a systematic and repeatable staged variable selection procedure that included a spatial analysis, which has application for other environmentally determined infectious diseases. All this was accomplished using general-purpose statistical software.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          A concordance correlation coefficient to evaluate reproducibility.

          L Lin (1989)
          A new reproducibility index is developed and studied. This index is the correlation between the two readings that fall on the 45 degree line through the origin. It is simple to use and possesses desirable properties. The statistical properties of this estimate can be satisfactorily evaluated using an inverse hyperbolic tangent transformation. A Monte Carlo experiment with 5,000 runs was performed to confirm the estimate's validity. An application using actual data is given.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regression Modeling Strategies

            Springer Series in Statistics
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing the generalizability of prognostic information.

              Physicians are often asked to make prognostic assessments but often worry that their assessments will prove inaccurate. Prognostic systems were developed to enhance the accuracy of such assessments. This paper describes an approach for evaluating prognostic systems based on the accuracy (calibration and discrimination) and generalizability (reproducibility and transportability) of the system's predictions. Reproducibility is the ability to produce accurate predictions among patients not included in the development of the system but from the same population. Transportability is the ability to produce accurate predictions among patients drawn from a different but plausibly related population. On the basis of the observation that the generalizability of a prognostic system is commonly limited to a single historical period, geographic location, methodologic approach, disease spectrum, or follow-up interval, we describe a working hierarchy of the cumulative generalizability of prognostic systems. This approach is illustrated in a structured review of the Dukes and Jass staging systems for colon and rectal cancer and applied to a young man with colon cancer. Because it treats the development of the system as a "black box" and evaluates only the performance of the predictions, the approach can be applied to any system that generates predicted probabilities. Although the Dukes and Jass staging systems are discrete, the approach can also be applied to systems that generate continuous predictions and, with some modification, to systems that predict over multiple time periods. Like any scientific hypothesis, the generalizability of a prognostic system is established by being tested and being found accurate across increasingly diverse settings. The more numerous and diverse the settings in which the system is tested and found accurate, the more likely it will generalize to an untested setting.
                Bookmark

                Author and article information

                Journal
                Int J Health Geogr
                International Journal of Health Geographics
                BioMed Central
                1476-072X
                2007
                24 September 2007
                : 6
                : 44
                Affiliations
                [1 ]Malaria Research Programme, Medical Research Council, 491 Ridge Road, Overport, Durban, 4091, South Africa
                [2 ]Swiss Tropical Institute, 57 Socinstrasse, Basel, BS 4002, Switzerland
                [3 ]London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
                Article
                1476-072X-6-44
                10.1186/1476-072X-6-44
                2082025
                17892584
                984dafae-00ff-46c8-9c9b-90fddef8f6b0
                Copyright © 2007 Craig et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 April 2007
                : 24 September 2007
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article