14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AAV-CRISPR/Cas9–Mediated Depletion of VEGFR2 Blocks Angiogenesis In Vitro

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Pathologic angiogenesis is a component of many diseases, including neovascular age-related macular degeneration, proliferation diabetic retinopathy, as well as tumor growth and metastasis. The purpose of this project was to examine whether the system of adeno-associated viral (AAV)–mediated CRISPR (clustered regularly interspaced short palindromic repeats)–associated endonuclease (Cas)9 can be used to deplete expression of VEGF receptor 2 (VEGFR2) in human vascular endothelial cells in vitro and thus suppress its downstream signaling events.

          Methods

          The dual AAV system of CRISPR/Cas9 from Streptococcus pyogenes (AAV-SpGuide and -SpCas9) was adapted to edit genomic VEGFR2 in primary human retinal microvascular endothelial cells (HRECs). In this system, the endothelial-specific promoter for intercellular adhesion molecule 2 (ICAM2) was cloned into the dual AAV vectors of SpGuide and SpCas9 for driving expression of green fluorescence protein (GFP) and SpCas9, respectively. These two AAV vectors were applied to production of recombinant AAV serotype 5 (rAAV5), which were used to infect HRECs for depletion of VEGFR2. Protein expression was determined by Western blot; and cell proliferation, migration, as well as tube formation were examined.

          Results

          AAV5 effectively infected vascular endothelial cells (ECs) and retinal pigment epithelial (RPE) cells; the ICAM2 promoter drove expression of GFP and SpCas9 in HRECs, but not in RPE cells. The results showed that the rAAV5-CRISPR/Cas9 depleted VEGFR2 by 80% and completely blocked VEGF-induced activation of Akt, and proliferation, migration as well as tube formation of HRECs.

          Conclusions

          AAV-CRISRP/Cas9–mediated depletion of VEGFR2 is a potential therapeutic strategy for pathologic angiogenesis.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and regulation of endothelial VEGF receptor signalling.

          Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are uniquely required to balance the formation of new blood vessels with the maintenance and remodelling of existing ones, during development and in adult tissues. Recent advances have greatly expanded our understanding of the tight and multi-level regulation of VEGFR2 signalling, which is the primary focus of this Review. Important insights have been gained into the regulatory roles of VEGFR-interacting proteins (such as neuropilins, proteoglycans, integrins and protein tyrosine phosphatases); the dynamics of VEGFR2 endocytosis, trafficking and signalling; and the crosstalk between VEGF-induced signalling and other endothelial signalling cascades. A clear understanding of this multifaceted signalling web is key to successful therapeutic suppression or stimulation of vascular growth.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9.

            Probing gene function in the mammalian brain can be greatly assisted with methods to manipulate the genome of neurons in vivo. The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Streptococcus pyogenes (SpCas9) can be used to edit single or multiple genes in replicating eukaryotic cells, resulting in frame-shifting insertion/deletion (indel) mutations and subsequent protein depletion. Here, we delivered SpCas9 and guide RNAs using adeno-associated viral (AAV) vectors to target single (Mecp2) as well as multiple genes (Dnmt1, Dnmt3a and Dnmt3b) in the adult mouse brain in vivo. We characterized the effects of genome modifications in postmitotic neurons using biochemical, genetic, electrophysiological and behavioral readouts. Our results demonstrate that AAV-mediated SpCas9 genome editing can enable reverse genetic studies of gene function in the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TAL effectors: customizable proteins for DNA targeting.

              Generating and applying new knowledge from the wealth of available genomic information is hindered, in part, by the difficulty of altering nucleotide sequences and expression of genes in living cells in a targeted fashion. Progress has been made in engineering DNA binding domains to direct proteins to particular sequences for mutagenesis or manipulation of transcription; however, achieving the requisite specificities has been challenging. Transcription activator-like (TAL) effectors of plant pathogenic bacteria contain a modular DNA binding domain that appears to overcome this challenge. Comprising tandem, polymorphic amino acid repeats that individually specify contiguous nucleotides in DNA, this domain is being deployed in DNA targeting for applications ranging from understanding gene function in model organisms to improving traits in crop plants to treating genetic disorders in people.
                Bookmark

                Author and article information

                Journal
                Invest Ophthalmol Vis Sci
                Invest. Ophthalmol. Vis. Sci
                iovs
                Invest Ophthalmol Vis Sci
                IOVS
                Investigative Ophthalmology & Visual Science
                The Association for Research in Vision and Ophthalmology
                0146-0404
                1552-5783
                December 2017
                : 58
                : 14
                : 6082-6090
                Affiliations
                [1 ]Schepens Eye Research Institute of Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
                [2 ]Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
                [3 ]Shanxi Eye Hospital, Taiyuan City, Shanxi Province, China
                [4 ]Department of Ophthalmology, The Third Affiliated Hospital of Xinxiang Medical University, Eye Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
                Author notes
                Correspondence: Hetian Lei, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114, USA; Hetian_lei@ 123456meei.harvard.edu .

                WW, YD, and GM contributed equally to the work presented here and should therefore be regarded as equivalent authors.

                Article
                iovs-58-13-41 IOVS-17-21902
                10.1167/iovs.17-21902
                5714046
                29204648
                9891c76b-7e10-4d49-9cba-139ad0ebbcb6
                Copyright 2017 The Authors

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 20 March 2017
                : 29 October 2017
                Categories
                Biochemistry and Molecular Biology

                aav5,crispr/cas9,vegfr2,angiogenesis
                aav5, crispr/cas9, vegfr2, angiogenesis

                Comments

                Comment on this article