6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The green reduction of graphene oxide

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Graphene is an ultra-thin material, which has received broad interest in many areas of science and technology because of its unique physical, chemical, mechanical and thermal properties.

          Abstract

          Graphene is an ultra-thin material, which has received broad interest in many areas of science and technology because of its unique physical, chemical, mechanical and thermal properties. Synthesis of high quality graphene in an inexpensive and eco-friendly manner is a big challenge. Among various methods, chemical synthesis is considered the best because it is easy, scalable, facile, and inexpensive. Different kinds of chemical reducers have been used to produce graphene sheets. However, some chemicals are toxic, corrosive, and hazardous. For this reason, researchers have been using different environmentally friendly substances (termed green reducers) to produce functional graphene sheets. This paper presents an overview and discussion of the green reduction of graphene oxide (GO) to graphene. It also reviews the characterization of GO and its oxide reduction through the analysis of different spectroscopic and microscopic techniques such as Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy.

          Related collections

          Most cited references218

          • Record: found
          • Abstract: found
          • Article: not found

          Electric Field Effect in Atomically Thin Carbon Films

          We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The rise of graphene.

            Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects

                Bookmark

                Author and article information

                Journal
                RSCACL
                RSC Advances
                RSC Adv.
                Royal Society of Chemistry (RSC)
                2046-2069
                2016
                2016
                : 6
                : 33
                : 27807-27828
                Affiliations
                [1 ]Department of Mechanical Engineering
                [2 ]Faculty of Engineering
                [3 ]University of Malaya
                [4 ]50603 Kuala Lumpur
                [5 ]Malaysia
                [6 ]Center of Research Excellence in Renewable Energy (CoRE-RE)
                [7 ]Research Institute
                [8 ]King Fahd University of Petroleum & Minerals (KFUPM)
                [9 ]Dhahran
                [10 ]Saudi Arabia
                Article
                10.1039/C6RA03189G
                98a537db-5e96-49f0-ad8c-8a3095b47a10
                © 2016
                History

                Comments

                Comment on this article