5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Negative index material composed of electric and magnetic resonators

      , , ,
      Applied Physics Letters
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Composite Medium with Simultaneously Negative Permeability and Permittivity

          We demonstrate a composite medium, based on a periodic array of interspaced conducting nonmagnetic split ring resonators and continuous wires, that exhibits a frequency region in the microwave regime with simultaneously negative values of effective permeability &mgr;(eff)(omega) and permittivity varepsilon(eff)(omega). This structure forms a "left-handed" medium, for which it has been predicted that such phenomena as the Doppler effect, Cherenkov radiation, and even Snell's law are inverted. It is now possible through microwave experiments to test for these effects using this new metamaterial.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electromagnetic parameter retrieval from inhomogeneous metamaterials.

            We discuss the validity of standard retrieval methods that assign bulk electromagnetic properties, such as the electric permittivity epsilon and the magnetic permeability mu, from calculations of the scattering (S) parameters for finite-thickness samples. S-parameter retrieval methods have recently become the principal means of characterizing artificially structured metamaterials, which, by nature, are inherently inhomogeneous. While the unit cell of a metamaterial can be made considerably smaller than the free space wavelength, there remains a significant variation of the phase across the unit cell at operational frequencies in nearly all metamaterial structures reported to date. In this respect, metamaterials do not rigorously satisfy an effective medium limit and are closer conceptually to photonic crystals. Nevertheless, we show here that a modification of the standard S-parameter retrieval procedure yields physically reasonable values for the retrieved electromagnetic parameters, even when there is significant inhomogeneity within the unit cell of the structure. We thus distinguish a metamaterial regime, as opposed to the effective medium or photonic crystal regimes, in which a refractive index can be rigorously established but where the wave impedance can only be approximately defined. We present numerical simulations on typical metamaterial structures to illustrate the modified retrieval algorithm and the impact on the retrieved material parameters. We find that no changes to the standard retrieval procedures are necessary when the inhomogeneous unit cell is symmetric along the propagation axis; however, when the unit cell does not possess this symmetry, a modified procedure--in which a periodic structure is assumed--is required to obtain meaningful electromagnetic material parameters.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Electric-field-coupled resonators for negative permittivity metamaterials

                Bookmark

                Author and article information

                Journal
                Applied Physics Letters
                Appl. Phys. Lett.
                AIP Publishing
                0003-6951
                1077-3118
                June 25 2007
                June 25 2007
                : 90
                : 26
                : 263504
                Article
                10.1063/1.2752120
                990cb84e-c9b3-473f-aebc-8576c8d6d73a
                © 2007
                History

                Comments

                Comment on this article