Search for authorsSearch for similar articles
13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Controlled Co-delivery of Growth Factors through Layer-by-Layer Assembly of Core–Shell Nanofibers for Improving Bone Regeneration

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The regeneration of bone tissue is regulated by both osteogenic and angiogenic growth factors which are expressed in a coordinated cascade of events. The aim of this study was to create a dual growth factor-release system that allows for time-controlled release to facilitate bone regeneration. We fabricated core-shell SF/PCL/PVA nanofibrous mats using coaxial electrospinning and layer-by-layer (LBL) techniques, where bone morphogenetic protein 2 (BMP2) was incorporated into the core of the nanofibers and connective tissue growth factor (CTGF) was attached onto the surface. Our study confirmed the sustained release of BMP2 and a rapid release of CTGF. Both in vitro and in vivo experiments demonstrated improvements in bone tissue recovery with the dual-drug release system. In vivo studies showed improvement in bone regeneration by 43% compared with single BMP2 release systems. Time-controlled release enabled by the core-shell nanofiber assembly provides a promising strategy to facilitate bone healing.

          Related collections

          Author and article information

          Journal
          ACS Nano
          ACS Nano
          American Chemical Society (ACS)
          1936-0851
          1936-086X
          June 13 2019
          June 13 2019
          Affiliations
          [1 ]The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
          [2 ]Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
          [3 ]Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, United States
          [4 ]Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
          [5 ]School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
          Article
          10.1021/acsnano.8b06032
          31184474
          99120d29-f077-4abd-8051-c44240657112
          © 2019
          History

          Comments

          Comment on this article