2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanoscale structures and mechanics of peptide nucleic acids

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peptide nucleic acids are charge-neutral polyamide oligomers with extremely flexible backbones that have a strong affinity for hybridization with complementary DNA or RNA, as well as encouraging antisense and antigene activity in cell-free systems.

          Abstract

          Peptide nucleic acids (PNAs) are charge-neutral polyamide oligomers having extremely favorable thermal stability and high affinity to cell membranes when coupled with cationic cell-penetrating peptides (CPPs), as well as the encouraging antisense and antigene activity in cell-free systems. The study of the mechanical properties of short PNA molecules is rare both in experiments and theoretical calculations. Here, we studied the microscopic structures and elastic properties; namely, persistence length, stretch modulus, twist–stretch coupling, and structural crookedness of double-stranded PNA (dsPNA) and their hybrid derivatives using all-atom MD simulation and compared them with those of double-stranded DNA (dsDNA) and double-stranded RNA (dsRNA). The stretch modulus of the dsPNA is found to be ∼160 pN, an order of magnitude lower than that of dsDNA and smaller than dsRNA, respectively. Similarly, the persistence length of dsPNA is found to be ∼35 nm, significantly smaller than those of dsDNA and dsRNA. The PNA–DNA and PNA–RNA hybrid duplexes have elastic properties lying between that of dsPNA and dsDNA/dsRNA. We argue that the neutral backbones of the PNA make it less stiff than dsDNA and dsRNA molecules. Measurement of structural crookedness and principal component analysis additionally support the bending flexibility of dsPNA. Detailed analysis of the helical-rise coupled to helical-twist indicates that the PNA–DNA hybrid over-winds like dsDNA, while PNA–PNA and PNA–RNA unwind like dsRNA upon stretching. Because of the highly flexible nature of PNA, it can bind other biomolecules by adopting a wide range of conformations and is believed to be crucial for future nanobiotechnology research studies.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: not found
          • Article: not found

          VMD: Visual molecular dynamics

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Comparison of simple potential functions for simulating liquid water

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                NANOHL
                Nanoscale
                Nanoscale
                Royal Society of Chemistry (RSC)
                2040-3364
                2040-3372
                May 05 2022
                2022
                : 14
                : 17
                : 6620-6635
                Affiliations
                [1 ]Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
                [2 ]Department of Physics, Prithvinarayan Campus, Tribhuvan University, Nepal
                Article
                10.1039/D1NR04239D
                9926e566-1d15-4527-a38c-16c323db9107
                © 2022

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article