+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      A novel tribasic Golgi export signal directs cargo protein interaction with activated Rab11 and AP-1–dependent Golgi–plasma membrane trafficking

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          A novel sorting motif present in the reovirus p14 fusion–associated small transmembrane protein directs interaction with GTP-Rab11 at the TGN and sorting into AP-1–coated vesicles for trafficking to the plasma membrane. This is the first example of cargo protein interaction with activated Rab11 mediating anterograde trafficking from the TGN.


          The reovirus fusion–associated small transmembrane (FAST) proteins comprise a unique family of viral membrane fusion proteins dedicated to inducing cell–cell fusion. We recently reported that a polybasic motif (PBM) in the cytosolic tail of reptilian reovirus p14 FAST protein functions as a novel tribasic Golgi export signal. Using coimmunoprecipitation and fluorescence resonance energy transfer (FRET) assays, we now show the PBM directs interaction of p14 with GTP-Rab11. Overexpression of dominant-negative Rab11 and RNA interference knockdown of endogenous Rab11 inhibited p14 plasma membrane trafficking and resulted in p14 accumulation in the Golgi complex. This is the first example of Golgi export to the plasma membrane that is dependent on the interaction of membrane protein cargo with activated Rab11. RNA interference and immunofluorescence microscopy further revealed that p14 Golgi export is dependent on AP-1 (but not AP-3 or AP-4) and that Rab11 and AP-1 both colocalize with p14 at the TGN. Together these results imply the PBM mediates interactions of p14 with activated Rab11 at the TGN, resulting in p14 sorting into AP1-coated vesicles for anterograde TGN–plasma membrane transport.

          Related collections

          Most cited references 71

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            • Record: found
            • Abstract: found
            • Article: not found

            Rab GTPases as coordinators of vesicle traffic.

            Membrane trafficking between organelles by vesiculotubular carriers is fundamental to the existence of eukaryotic cells. Central in ensuring that cargoes are delivered to their correct destinations are the Rab GTPases, a large family of small GTPases that control membrane identity and vesicle budding, uncoating, motility and fusion through the recruitment of effector proteins, such as sorting adaptors, tethering factors, kinases, phosphatases and motors. Crosstalk between multiple Rab GTPases through shared effectors, or through effectors that recruit selective Rab activators, ensures the spatiotemporal regulation of vesicle traffic. Functional impairments of Rab pathways are associated with diseases, such as immunodeficiencies, cancer and neurological disorders.
              • Record: found
              • Abstract: found
              • Article: not found

              Role of Rab GTPases in membrane traffic and cell physiology.

              Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.

                Author and article information

                aDepartment of Microbiology and Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
                bDepartment of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
                cDepartment of Pediatrics, Dalhousie University, Halifax, NS B3H 4R2, Canada
                University of Oxford
                Author notes
                *Address correspondence to: Roy Duncan ( roy.duncan@ ).
                Role: Monitoring Editor
                Mol Biol Cell
                Mol. Biol. Cell
                Mol. Bio. Cell
                Molecular Biology of the Cell
                The American Society for Cell Biology
                15 April 2016
                : 27
                : 8
                : 1320-1331
                26941330 4831885 E15-12-0845 10.1091/mbc.E15-12-0845
                © 2016 Parmar and Duncan. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (

                “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society for Cell Biology.

                Membrane Trafficking

                Molecular biology


                Comment on this article