0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mouse serum albumin induces neuronal apoptosis and tauopathies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The elderly frequently present impaired blood–brain barrier which is closely associated with various neurodegenerative diseases. However, how the albumin, the most abundant protein in the plasma, leaking through the disrupted BBB, contributes to the neuropathology remains poorly understood. We here demonstrated that mouse serum albumin-activated microglia induced astrocytes to A1 phenotype to remarkably increase levels of Elovl1, an astrocytic synthase for very long-chain saturated fatty acids, significantly promoting VLSFAs secretion and causing neuronal lippoapoptosis through endoplasmic reticulum stress response pathway. Moreover, MSA-activated microglia triggered remarkable tau phosphorylation at multiple sites through NLRP3 inflammasome pathway. Intracerebroventricular injection of MSA into the brains of C57BL/6J mice to a similar concentration as in patient brains induced neuronal apoptosis, neuroinflammation, increased tau phosphorylation, and decreased the spatial learning and memory abilities, while Elovl1 knockdown significantly prevented the deleterious effect of MSA. Overall, our study here revealed that MSA induced tau phosphorylation and neuron apoptosis based on MSA-activated microglia and astrocytes, respectively, showing the critical roles of MSA in initiating the occurrence of tauopathies and cognitive decline, and providing potential therapeutic targets for MSA-induced neuropathology in multiple neurodegenerative disorders.

          Supplementary Information

          The online version contains supplementary material available at 10.1186/s40478-024-01771-6.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Neurotoxic reactive astrocytes are induced by activated microglia

          A reactive astrocyte subtype termed A1 is induced after injury or disease of the central nervous system and subsequently promotes the death of neurons and oligodendrocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders

            The blood-brain barrier (BBB) is a continuous endothelial membrane within brain microvessels that has sealed cell-to-cell contacts and is sheathed by mural vascular cells and perivascular astrocyte end-feet. The BBB protects neurons from factors present in the systemic circulation and maintains the highly regulated CNS internal milieu, which is required for proper synaptic and neuronal functioning. BBB disruption allows influx into the brain of neurotoxic blood-derived debris, cells and microbial pathogens and is associated with inflammatory and immune responses, which can initiate multiple pathways of neurodegeneration. This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy. The pathogenic mechanisms by which BBB breakdown leads to neuronal injury, synaptic dysfunction, loss of neuronal connectivity and neurodegeneration are described. The importance of a healthy BBB for therapeutic drug delivery and the adverse effects of disease-initiated, pathological BBB breakdown in relation to brain delivery of neuropharmaceuticals are briefly discussed. Finally, future directions, gaps in the field and opportunities to control the course of neurological diseases by targeting the BBB are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?

              Alzheimer disease (AD) is the most common form of neurodegenerative disease, estimated to contribute 60-70% of all cases of dementia worldwide. According to the prevailing amyloid cascade hypothesis, amyloid-β (Aβ) deposition in the brain is the initiating event in AD, although evidence is accumulating that this hypothesis is insufficient to explain many aspects of AD pathogenesis. The discovery of increased levels of inflammatory markers in patients with AD and the identification of AD risk genes associated with innate immune functions suggest that neuroinflammation has a prominent role in the pathogenesis of AD. In this Review, we discuss the interrelationships between neuroinflammation and amyloid and tau pathologies as well as the effect of neuroinflammation on the disease trajectory in AD. We specifically focus on microglia as major players in neuroinflammation and discuss the spatial and temporal variations in microglial phenotypes that are observed under different conditions. We also consider how these cells could be modulated as a therapeutic strategy for AD.
                Bookmark

                Author and article information

                Contributors
                rtliu@ipe.ac.cn
                Journal
                Acta Neuropathol Commun
                Acta Neuropathol Commun
                Acta Neuropathologica Communications
                BioMed Central (London )
                2051-5960
                23 April 2024
                23 April 2024
                2024
                : 12
                : 66
                Affiliations
                [1 ]GRID grid.9227.e, ISNI 0000000119573309, National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, , Chinese Academy of Sciences, ; Haidian District, Beijing, 100190 China
                [2 ]University of Chinese Academy of Sciences, ( https://ror.org/05qbk4x57) Beijing, 100049 China
                [3 ]Ningxia University, ( https://ror.org/04j7b2v61) Yinchuan, 750021 Ningxia China
                Article
                1771
                10.1186/s40478-024-01771-6
                11040793
                38654316
                99a3fba6-5c92-45c3-9f76-644bc5132cb7
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 4 December 2023
                : 31 March 2024
                Funding
                Funded by: Strategic Priority Research Program of the Chinese Academy of Sciences
                Award ID: XDB39050600
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: 82150107
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100007847, Natural Science Foundation of Jilin Province;
                Award ID: 81971610
                Award Recipient :
                Categories
                Research
                Custom metadata
                © BioMed Central Ltd., part of Springer Nature 2024

                mouse serum albumin,neuroinflammation,apoptosis,tau phosphorylation

                Comments

                Comment on this article