8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Activating rhodium phosphide-based catalysts for the pH-universal hydrogen evolution reaction.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Highly active and stable Pt-free electrocatalysts for hydrogen production via water splitting are of great demand for future energy systems. Herein, we report a novel hydrogen evolution reaction (HER) catalyst consisting of rhodium phosphide (Rh2P) nanoparticles as the core and N-doped carbon (NC) as the shell (Rh2P@NC). In a wide pH range, our catalyst not only possesses a small overpotential at 10 mA cm-2 (∼9 mV in 0.5 M H2SO4, ∼46 mV in 1.0 M PBS and ∼10 mV in 1.0 M KOH), but also demonstrates high stability. Importantly, all these performances are far superior to commercial Pt/C catalysts for HER. To the best of our knowledge, this is the highest HER performance reported so far in acidic and basic media. Density functional theory (DFT) calculations reveal that the introduction of phosphorus can significantly lower the proton adsorption energy of Rh/NC, thereby benefiting surface hydrogen generation. Moreover, this synthetic strategy for Rh2P@NC is also applied to other transition metal phosphides (TMPs)/nitrogen-doped carbon heterostructures (such as Ru2P@NC, Fe2P@NC, WP@NC etc.) with advanced performance toward HER and beyond.

          Related collections

          Author and article information

          Journal
          Nanoscale
          Nanoscale
          Royal Society of Chemistry (RSC)
          2040-3372
          2040-3364
          Jul 09 2018
          : 10
          : 26
          Affiliations
          [1 ] State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China. msc@whut.edu.cn.
          Article
          10.1039/c8nr02854k
          29926048
          9a985697-3620-463f-a3cc-aeefeb804125
          History

          Comments

          Comment on this article