38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Parkinson's disease (PD) is the most prevalent incurable neurodegenerative movement disorder. Mutations in LRRK2 are associated with both autosomal dominant familial and sporadic forms of PD. LRRK2 encodes a large putative serine/threonine kinase with GTPase activity. Increased LRRK2 kinase activity plays a critical role in pathogenic LRRK2 mutant-induced neurodegeneration in vitro. Little is known about the physiological function of LRRK2.

          Results

          We have recently identified a Drosophila line with a P-element insertion in an ortholog gene of human LRRK2 ( dLRRK). The insertion results in a truncated Drosophila LRRK variant with N-terminal 1290 amino acids but lacking C-terminal kinase domain. The homozygous mutant fly develops normally with normal life span as well as unchanged number and pattern of dopaminergic neurons. However, dLRRK mutant flies were selectively sensitive to hydrogen peroxide induced stress but not to paraquat, rotenone and β-mercaptoethanol induced stresses.

          Conclusion

          Our results indicate that inactivation of dLRRK kinase activity is not essential for fly development and suggest that inhibition of LRRK activity may serve as a potential treatment of PD. However, dLRRK kinase activity likely plays a role in protecting against oxidative stress.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular pathways of neurodegeneration in Parkinson's disease.

            Parkinson's disease (PD) is a complex disorder with many different causes, yet they may intersect in common pathways, raising the possibility that neuroprotective agents may have broad applicability in the treatment of PD. Current evidence suggests that mitochondrial complex I inhibition may be the central cause of sporadic PD and that derangements in complex I cause alpha-synuclein aggregation, which contributes to the demise of dopamine neurons. Accumulation and aggregation of alpha-synuclein may further contribute to the death of dopamine neurons through impairments in protein handling and detoxification. Dysfunction of parkin (a ubiquitin E3 ligase) and DJ-1 could contribute to these deficits. Strategies aimed at restoring complex I activity, reducing oxidative stress and alpha-synuclein aggregation, and enhancing protein degradation may hold particular promise as powerful neuroprotective agents in the treatment of PD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Parkinson's disease. Second of two parts.

              At no time in the past have the basic and clinical sciences applied to Parkinson's disease been so active. Experimental therapies under study at present promise to improve on the limitations of existing treatments. Future progress in understanding the causation and pathogenesis of the disorder will permit the development of new treatments that will slow, halt, or even reverse the currently inexorable progressive course of Parkinson's disease.
                Bookmark

                Author and article information

                Journal
                Mol Neurodegener
                Molecular Neurodegeneration
                BioMed Central
                1750-1326
                2008
                8 February 2008
                : 3
                : 3
                Affiliations
                [1 ]Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
                [2 ]National Laboratory of Medical Genetics, Xiangya Hospital, Central South University, Changsha, Hunan, China
                [3 ]Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
                Article
                1750-1326-3-3
                10.1186/1750-1326-3-3
                2276501
                18257932
                9b080063-c34a-47b7-bcdd-b5944d7a1af5
                Copyright © 2008 Wang et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 November 2007
                : 8 February 2008
                Categories
                Short Report

                Neurosciences
                Neurosciences

                Comments

                Comment on this article