38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Complete Optical Absorption in Periodically Patterned Graphene

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We demonstrate that 100% light absorption can take place in a single patterned sheet of doped graphene. General analysis shows that a planar array of small particles with losses exhibits full absorption under critical-coupling conditions provided the cross section of each individual particle is comparable to the area of the lattice unit cell. Specifically, arrays of doped graphene nanodisks display full absorption when supported on a substrate under total internal reflection and also when lying on a dielectric layer coating a metal. Our results are relevant for infrared light detectors and sources, which can be made tunable via electrostatic doping of graphene.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: not found
          • Article: not found

          Optical Constants of the Noble Metals

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Infrared perfect absorber and its application as plasmonic sensor.

            We experimentally demonstrate a perfect plasmonic absorber at lambda = 1.6 microm. Its polarization-independent absorbance is 99% at normal incidence and remains very high over a wide angular range of incidence around +/-80 degrees. We introduce a novel concept to utilize this perfect absorber as plasmonic sensor for refractive index sensing. This sensing strategy offers great potential to maintain the performance of localized surface plasmon sensors even in nonlaboratory environments due to its simple and robust measurement scheme.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Measurement of the optical conductivity of graphene.

              Optical reflectivity and transmission measurements over photon energies between 0.2 and 1.2 eV were performed on single-crystal graphene samples on a SiO2 substrate. For photon energies above 0.5 eV, graphene yielded a spectrally flat optical absorbance of (2.3+/-0.2)%. This result is in agreement with a constant absorbance of pialpha, or a sheet conductivity of pie2/2h, predicted within a model of noninteracting massless Dirac fermions. This simple result breaks down at lower photon energies, where both spectral and sample-to-sample variations were observed. This "nonuniversal" behavior is explained by including the effects of doping and finite temperature, as well as contributions from intraband transitions.
                Bookmark

                Author and article information

                Journal
                PRLTAO
                Physical Review Letters
                Phys. Rev. Lett.
                American Physical Society (APS)
                0031-9007
                1079-7114
                January 2012
                January 27 2012
                : 108
                : 4
                Article
                10.1103/PhysRevLett.108.047401
                22400887
                9b214604-40e3-4d59-92b0-175ab098472e
                © 2012

                http://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article