35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mean Platelet Volume (MPV): New Perspectives for an Old Marker in the Course and Prognosis of Inflammatory Conditions

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Platelet size has been demonstrated to reflect platelet activity and seems to be a useful predictive and prognostic biomarker of cardiovascular events. It is associated with a variety of prothrombotic and proinflammatory diseases. The aim is a review of literature reports concerning changes in the mean platelet volume (MPV) and its possible role as a biomarker in inflammatory processes and neoplastic diseases. PubMed database was searched for sources using the following keywords: platelet activation, platelet count, mean platelet volume and: inflammation, cancer/tumor, cardiovascular diseases, myocardial infarction, diabetes, lupus disease, rheumatoid arthritis, tuberculosis, ulcerative colitis, renal disease, pulmonary disease, influencing factors, age, gender, genetic factors, oral contraceptives, smoking, lifestyle, methods, standardization, and hematological analyzer. Preference was given to the sources which were published within the past 20 years. Increased MPV was observed in cardiovascular diseases, cerebral stroke, respiratory diseases, chronic renal failure, intestine diseases, rheumatoid diseases, diabetes, and various cancers. Decreased MPV was noted in tuberculosis during disease exacerbation, ulcerative colitis, SLE in adult, and different neoplastic diseases. The study of MPV can provide important information on the course and prognosis in many inflammatory conditions. Therefore, from the clinical point of view, it would be interesting to establish an MPV cut-off value indicating the intensity of inflammatory process, presence of the disease, increased risk of disease development, increased risk of thrombotic complications, increased risk of death, and patient's response on applied treatment. Nevertheless, this aspect of MPV evaluation allowing its use in clinical practice is limited and requires further studies.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The incredible journey: From megakaryocyte development to platelet formation

          Circulating blood platelets are specialized cells that prevent bleeding and minimize blood vessel injury. Large progenitor cells in the bone marrow called megakaryocytes (MKs) are the source of platelets. MKs release platelets through a series of fascinating cell biological events. During maturation, they become polyploid and accumulate massive amounts of protein and membrane. Then, in a cytoskeletal-driven process, they extend long branching processes, designated proplatelets, into sinusoidal blood vessels where they undergo fission to release platelets. Given the need for platelets in many pathological situations, understanding how this process occurs is an active area of research with important clinical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis.

            To determine whether an association exists between mean platelet volume (MPV) and acute myocardial infarction (AMI) and other cardiovascular events. Platelet activity is a major culprit in atherothrombotic events. MPV, which is widely available in clinical practice, is a potentially useful biomarker of platelet activity in the setting of cardiovascular disease. We performed a systematic review and meta-analysis investigating the association between MPV and AMI, all-cause mortality following myocardial infarction, and restenosis following coronary angioplasty. Results were pooled using random-effects modeling. Pooled results from 16 cross-sectional studies involving 2809 patients investigating the association of MPV and AMI indicated that MPV was significantly higher in those with AMI than those without AMI [mean difference 0.92 fL, 95% confidence interval (CI) 0.67-1.16, P < 0.001). In subgroup analyses, significant differences in MPV existed between subjects with AMI, subjects with stable coronary disease (P < 0.001), and stable controls (P < 0.001), but not vs. those with unstable angina (P = 0.24). Pooled results from three cohort studies involving 3184 patients evaluating the risk of death following AMI demonstrated that an elevated MPV increased the odds of death as compared with a normal MPV (11.5% vs. 7.1%, odds ratio 1.65, 95% CI 1.12-2.52, P = 0.012). Pooled results from five cohort studies involving 430 patients who underwent coronary angioplasty revealed that MPV was significantly higher in patients who developed restenosis than in those who did not develop restenosis (mean difference 0.98 fL, 95% CI 0.74-1.21, P < 0.001). Elevated MPV is associated with AMI, mortality following myocardial infarction, and restenosis following coronary angioplasty. These data suggest that MPV is a potentially useful prognostic biomarker in patients with cardiovascular disease. Whether the relationship is causal, and whether MPV should influence practice or guide therapy, remains unknown.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential

              Background Several studies demonstrate the role of adipose mesenchymal stem cells (ASCs) in angiogenesis. The angiogenic mechanism has been ascribed to paracrine factors since these cells secrete a plenty of signal molecules and growth factors. Recently it has been suggested that besides soluble factors, extracellular vesicles (EVs) that include exosomes and microvesicles may play a major role in cell-to-cell communication. It has been shown that EVs are implicated in the angiogenic process. Results Herein we studied whether EVs released by ASCs may mediate the angiogenic activity of these cells. Our results demonstrated that ASC-derived EVs induced in vitro vessel-like structure formation by human microvascular endothelial cells (HMEC). EV-stimulated HMEC when injected subcutaneously within Matrigel in SCID mice formed vessels. Treatment of ASCs with platelet-derived growth factor (PDGF) stimulated the secretion of EVs, changed their protein composition and enhanced the angiogenic potential. At variance of EVs released in basal conditions, PDGF-EVs carried c-kit and SCF that played a role in angiogenesis as specific blocking antibodies inhibited in vitro vessel-like structure formation. The enhanced content of matrix metalloproteinases in PDGF-EVs may also account for their angiogenic activity. Conclusions Our findings indicate that EVs released by ASCs may contribute to the ASC-induced angiogenesis and suggest that PDGF may trigger the release of EVs with an enhanced angiogenic potential.
                Bookmark

                Author and article information

                Contributors
                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi
                0962-9351
                1466-1861
                2019
                17 April 2019
                : 2019
                : 9213074
                Affiliations
                Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15A, 15-276 Białystok, Poland
                Author notes

                Academic Editor: Daniela Novick

                Author information
                http://orcid.org/0000-0001-5199-2773
                http://orcid.org/0000-0003-4170-0997
                Article
                10.1155/2019/9213074
                6501263
                31148950
                9b5b567b-4f1b-46b9-b92b-6b2d41cc9ee5
                Copyright © 2019 Aleksandra Korniluk et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 November 2018
                : 26 February 2019
                : 28 February 2019
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article