20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Deep Semantic Multimodal Hashing Network for Scalable Multimedia Retrieval

      Preprint
      , , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hashing has been widely applied to multimodal retrieval on large-scale multimedia data due to its efficiency in computation and storage. Particularly, deep hashing has received unprecedented research attention in recent years, owing to its perfect retrieval performance. However, most of existing deep hashing methods learn binary hash codes by preserving the similarity relationship while without exploiting the semantic labels, which result in suboptimal binary codes. In this work, we propose a novel Deep Semantic Multimodal Hashing Network (DSMHN) for scalable multimodal retrieval. In DSMHN, two sets of modality-specific hash functions are jointly learned by explicitly preserving both the inter-modality similarities and the intra-modality semantic labels. Specifically, with the assumption that the learned hash codes should be optimal for task-specific classification, two stream networks are jointly trained to learn the hash functions by embedding the semantic labels on the resultant hash codes. Different from previous deep hashing methods, which are tied to some particular forms of loss functions, our deep hashing framework can be flexibly integrated with different types of loss functions. In addition, the bit balance property is investigated to generate binary codes with each bit having \(50\%\) probability to be \(1\) or \(-1\). Moreover, a unified deep multimodal hashing framework is proposed to learn compact and high-quality hash codes by exploiting the feature representation learning, inter-modality similarity preserving learning, semantic label preserving learning and hash functions learning with bit balanced constraint simultaneously. We conduct extensive experiments for both unimodal and cross-modal retrieval tasks on three widely-used multimodal retrieval datasets. The experimental result demonstrates that DSMHN significantly outperforms state-of-the-art methods.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

          In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7 percent mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            SIFT Meets CNN: A Decade Survey of Instance Retrieval

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bit-Scalable Deep Hashing with Regularized Similarity Learning for Image Retrieval and Person Re-identification

              Extracting informative image features and learning effective approximate hashing functions are two crucial steps in image retrieval . Conventional methods often study these two steps separately, e.g., learning hash functions from a predefined hand-crafted feature space. Meanwhile, the bit lengths of output hashing codes are preset in most previous methods, neglecting the significance level of different bits and restricting their practical flexibility. To address these issues, we propose a supervised learning framework to generate compact and bit-scalable hashing codes directly from raw images. We pose hashing learning as a problem of regularized similarity learning. Specifically, we organize the training images into a batch of triplet samples, each sample containing two images with the same label and one with a different label. With these triplet samples, we maximize the margin between matched pairs and mismatched pairs in the Hamming space. In addition, a regularization term is introduced to enforce the adjacency consistency, i.e., images of similar appearances should have similar codes. The deep convolutional neural network is utilized to train the model in an end-to-end fashion, where discriminative image features and hash functions are simultaneously optimized. Furthermore, each bit of our hashing codes is unequally weighted so that we can manipulate the code lengths by truncating the insignificant bits. Our framework outperforms state-of-the-arts on public benchmarks of similar image search and also achieves promising results in the application of person re-identification in surveillance. It is also shown that the generated bit-scalable hashing codes well preserve the discriminative powers with shorter code lengths.
                Bookmark

                Author and article information

                Journal
                09 January 2019
                Article
                1901.02662
                9bbc46ef-3abc-4d70-883e-ca7816c5538a

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                13 pages
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article