65
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Combining rabies-virus tracing, optical clearing (CLARITY), and whole-brain light-sheet imaging, we mapped the monosynaptic inputs to midbrain dopamine neurons projecting to different targets (different parts of the striatum, cortex, amygdala, etc) in mice. We found that most populations of dopamine neurons receive a similar set of inputs rather than forming strong reciprocal connections with their target areas. A common feature among most populations of dopamine neurons was the existence of dense ‘clusters’ of inputs within the ventral striatum. However, we found that dopamine neurons projecting to the posterior striatum were outliers, receiving relatively few inputs from the ventral striatum and instead receiving more inputs from the globus pallidus, subthalamic nucleus, and zona incerta. These results lay a foundation for understanding the input/output structure of the midbrain dopamine circuit and demonstrate that dopamine neurons projecting to the posterior striatum constitute a unique class of dopamine neurons regulated by different inputs.

          DOI: http://dx.doi.org/10.7554/eLife.10032.001

          eLife digest

          Most neurons send their messages to recipient neurons by releasing a substance called a ‘neurotransmitter’ that binds to receptors on the target cell. The sites of this type of signal transmission are called synapses. Some small populations of neurons modulate the activity of hundreds or thousands of these synapses all across the brain by releasing ‘neuromodulators’ that affect how they work. These neuromodulators are essential because they broadcast information that is likely to be useful to many brain regions, like a ‘news channel’ for the brain.

          One important neuromodulator in the mammalian brain is dopamine, which contributes to motivation, learning, and the control of movement. Clusters of cells deep in the brain release dopamine, and people with Parkinson's disease gradually lose these cells. This makes it increasingly difficult for their brains to produce the correct amount of dopamine, and results in symptoms such as tremors and stiff muscles.

          Individual dopamine neurons typically send information to a single part of the brain. This suggests that dopamine neurons with different targets might have different roles. To explore this possibility, Menegas et al. classified dopamine neurons in the mouse brain into eight types based on the areas to which they project, and then mapped which neurons send input signals to each type. These inputs are likely to shape the activity of each type (that is, their ‘message’ to the rest of the brain). The mapping revealed that most dopamine neurons do not receive substantial input from the area to which they project (i.e., they do not form ‘closed loops’). Instead, most of their input comes from a common set of brain regions, including a particularly large number of inputs from the ventral striatum.

          However, Menegas et al. found one exception. Dopamine neurons that target part of the brain called the posterior striatum receive relatively little input from the ventral striatum. Their input comes instead from a set of other brain structures, and in particular from a region called the subthalamic nucleus. Electrical stimulation of the subthalamic nucleus can help to relieve the symptoms of Parkinson's disease. Therefore, the results presented by Menegas et al. suggest that this population of dopamine neurons might be particularly relevant to Parkinson's disease and that focusing future studies on them could ultimately be beneficial for patients.

          DOI: http://dx.doi.org/10.7554/eLife.10032.002

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          A mesoscale connectome of the mouse brain.

          Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Single-cell phenotyping within transparent intact tissue through whole-body clearing.

            Understanding the structure-function relationships at cellular, circuit, and organ-wide scale requires 3D anatomical and phenotypical maps, currently unavailable for many organs across species. At the root of this knowledge gap is the absence of a method that enables whole-organ imaging. Herein, we present techniques for tissue clearing in which whole organs and bodies are rendered macromolecule-permeable and optically transparent, thereby exposing their cellular structure with intact connectivity. We describe PACT (passive clarity technique), a protocol for passive tissue clearing and immunostaining of intact organs; RIMS (refractive index matching solution), a mounting media for imaging thick tissue; and PARS (perfusion-assisted agent release in situ), a method for whole-body clearing and immunolabeling. We show that in rodents PACT, RIMS, and PARS are compatible with endogenous-fluorescence, immunohistochemistry, RNA single-molecule FISH, long-term storage, and microscopy with cellular and subcellular resolution. These methods are applicable for high-resolution, high-content mapping and phenotyping of normal and pathological elements within intact organs and bodies. Copyright © 2014 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. Pathophysiologic and clinical implications.

              Autografting of dopamine-producing adrenal medullary tissue to the striatal region of the brain is now being attempted in patients with Parkinson's disease. Since the success of this neurosurgical approach to dopamine-replacement therapy may depend on the selection of the most appropriate subregion of the striatum for implantation, we examined the pattern and degree of dopamine loss in striatum obtained at autopsy from eight patients with idiopathic Parkinson's disease. We found that in the putamen there was a nearly complete depletion of dopamine in all subdivisions, with the greatest reduction in the caudal portions (less than 1 percent of the dopamine remaining). In the caudate nucleus, the only subdivision with severe dopamine reduction was the most dorsal rostral part (4 percent of the dopamine remaining); the other subdivisions still had substantial levels of dopamine (up to approximately 40 percent of control levels). We propose that the motor deficits that are a constant and characteristic feature of idiopathic Parkinson's disease are for the most part a consequence of dopamine loss in the putamen, and that the dopamine-related caudate deficits (in "higher" cognitive functions) are, if present, less marked or restricted to discrete functions only. We conclude that the putamen--particularly its caudal portions--may be the most appropriate site for intrastriatal application of dopamine-producing autografts in patients with idiopathic Parkinson's disease.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                2050-084X
                31 August 2015
                2015
                : 4
                : e10032
                Affiliations
                [1 ]deptCenter for Brain Science, Department of Molecular and Cellular Biology , Harvard University , Cambridge, United States
                [2 ]Cold Spring Harbor Laboratory , Cold Spring Harbor, United States
                Brandeis University , United States
                Brandeis University , United States
                Author notes
                [* ]For correspondence: mitsuko@ 123456mcb.harvard.edu
                [†]

                Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, United States.

                [‡]

                RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States.

                Article
                10032
                10.7554/eLife.10032
                4598831
                26322384
                9c069472-19cb-4b8d-be5d-39846bfaf91f
                © 2015, Menegas et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 11 July 2015
                : 28 August 2015
                Funding
                No external funding was received for this work.
                Categories
                Research Article
                Neuroscience
                Custom metadata
                2.3
                Dopamine neurons projecting to different targets receive a similar set of inputs, rather than forming reciprocal connections, whereas those projecting to the posterior striatum receive a distinct set of inputs.

                Life sciences
                dopamine,rabies virus,striatum,anatomy,input,monosynaptic,mouse
                Life sciences
                dopamine, rabies virus, striatum, anatomy, input, monosynaptic, mouse

                Comments

                Comment on this article