Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system – A review

      , , , , , , , ,
      Food Hydrocolloids
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references130

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies

          Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sourdough and cereal fermentation in a nutritional perspective.

            Use of sourdough is of expanding interest for improvement of flavour, structure and stability of baked goods. Cereal fermentations also show significant potential in improvement and design of the nutritional quality and health effects of foods and ingredients. In addition to improving the sensory quality of whole grain, fibre-rich or gluten-free products, sourdough can also actively retard starch digestibility leading to low glycemic responses, modulate levels and bioaccessibility of bioactive compounds, and improve mineral bioavailability. Cereal fermentation may produce non-digestible polysaccharides, or modify accessibility of the grain fibre complex to gut microbiota. It has also been suggested that degradation of gluten may render bread better suitable for celiac persons. The changes in cereal matrix potentially leading to improved nutritional quality are numerous. They include acid production, suggested to retard starch digestibility, and to adjust pH to a range which favours the action of certain endogenous enzymes, thus changing the bioavailability pattern of minerals and phytochemicals. This is especially beneficial in products rich in bran to deliver minerals and potentially protective compounds in the blood circulation. The action of enzymes during fermentation also causes hydrolysis and solubilisation of grain macromolecules, such as proteins and cell wall polysaccharides. This changes product texture, which may affect nutrient and non-nutrient absorption. New bioactive compounds, such as prebiotic oligosaccharides or other metabolites, may also be formed in cereal fermentations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Lactic acid bacteria as starter cultures: An update in their metabolism and genetics

              Lactic acid bacteria (LAB) are members of an heterogenous group of bacteria which plays a significant role in a variety of fermentation processes. The general description of the bacteria included in the group is gram-positive, non-sporing, non-respiring cocci or rods. An overview of the genetics of lactococci, Streptococcus thermophilus, lactobacilli, pediococci, leuconostocs, enterococci and oenococciis presented with special reference to their metabolic traits. The three main pathways in which LAB are involved in the manufacture of fermented foods and the development of their flavour, are (a) glycolysis (fermentation of sugars), (b) lipolysis (degradation of fat) and (c) proteolysis (degradation of proteins). Although the major metabolic action is the production of lactic acid from the fermentation of carbohydrates, that is, the acidification of the food, LAB are involved in the production of many beneficial compounds such as organic acids, polyols, exopolysaccharides and antimicrobial compounds, and thus have a great number of applications in the food industry (i.e. starter cultures). With the advances in the genetics, molecular biology, physiology, and biochemistry and the reveal and publication of the complete genome sequence of a great number of LAB, new insights and applications for these bacteria have appeared and a variety of commercial starter, functional, bio-protective and probiotic cultures with desirable properties have marketed.
                Bookmark

                Author and article information

                Journal
                Food Hydrocolloids
                Food Hydrocolloids
                Elsevier BV
                0268005X
                February 2023
                February 2023
                : 135
                : 108212
                Article
                10.1016/j.foodhyd.2022.108212
                9c331ea2-e1e7-46a8-bb40-9d82030021ee
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article