126
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unfolded protein response in hepatitis C virus infection

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR.

          Related collections

          Most cited references171

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome.

          A random-primed complementary DNA library was constructed from plasma containing the uncharacterized non-A, non-B hepatitis (NANBH) agent and screened with serum from a patient diagnosed with NANBH. A complementary DNA clone was isolated that was shown to encode an antigen associated specifically with NANBH infections. This clone is not derived from host DNA but from an RNA molecule present in NANBH infections that consists of at least 10,000 nucleotides and that is positive-stranded with respect to the encoded NANBH antigen. These data indicate that this clone is derived from the genome of the NANBH agent and are consistent with the agent being similar to the togaviridae or flaviviridae. This molecular approach should be of great value in the isolation and characterization of other unidentified infectious agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Robust hepatitis C virus infection in vitro.

            The absence of a robust cell culture model of hepatitis C virus (HCV) infection has severely limited analysis of the HCV life cycle and the development of effective antivirals and vaccines. Here we report the establishment of a simple yet robust HCV cell culture infection system based on the HCV JFH-1 molecular clone and Huh-7-derived cell lines that allows the production of virus that can be efficiently propagated in tissue culture. This system provides a powerful tool for the analysis of host-virus interactions that should facilitate the discovery of antiviral drugs and vaccines for this important human pathogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Binding of hepatitis C virus to CD81.

              Chronic hepatitis C virus (HCV) infection occurs in about 3 percent of the world's population and is a major cause of liver disease. HCV infection is also associated with cryoglobulinemia, a B lymphocyte proliferative disorder. Virus tropism is controversial, and the mechanisms of cell entry remain unknown. The HCV envelope protein E2 binds human CD81, a tetraspanin expressed on various cell types including hepatocytes and B lymphocytes. Binding of E2 was mapped to the major extracellular loop of CD81. Recombinant molecules containing this loop bound HCV and antibodies that neutralize HCV infection in vivo inhibited virus binding to CD81 in vitro.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                20 May 2014
                2014
                : 5
                : 233
                Affiliations
                Faculty of Life Sciences, The University of Manchester Manchester, UK
                Author notes

                Edited by: Hirofumi Akari, Kyoto University, Japan

                Reviewed by: Ikuo Shoji, Kobe University Graduate School of Medicine, Japan; Kohji Moriishi, University of Yamanashi, Japan

                *Correspondence: Shiu-Wan Chan, Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK e-mail: shiu-wan.chan@ 123456manchester.ac.uk

                This article was submitted to Virology, a section of the journal Frontiers in Microbiology.

                Article
                10.3389/fmicb.2014.00233
                4033015
                24904547
                9cbfaa91-56b7-428b-9e83-b8c0afc33868
                Copyright © 2014 Chan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 April 2014
                : 30 April 2014
                Page count
                Figures: 9, Tables: 0, Equations: 0, References: 222, Pages: 17, Words: 15698
                Categories
                Microbiology
                Review Article

                Microbiology & Virology
                hepatitis c virus,unfolded protein response,endoplasmic reticulum stress,hepacivirus,virus-host interaction

                Comments

                Comment on this article