Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial transformation of ginsenoside Rb1, Re and Rg1 and its contribution to the improved anti-inflammatory activity of ginseng

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbial transformation of ginsenosides to increase its pharmaceutical effect is gaining increasing attention in recent years. In this study, Cellulosimicrobium sp. TH-20, which was isolated from soil samples on which ginseng grown, exhibited effective ginsenoside-transforming activity. After protopanaxadiol (PPD)-type ginsenoside (Rb1) and protopanaxatriol (PPT)-type ginsenosides (Re and Rg1) were fed to C. sp. TH20, a total of 12 metabolites, including 6 new intermediate metabolites, were identified. Stepwise deglycosylation and dehydrogenation on the feeding precursors have been observed. The final products were confirmed to be rare ginsenosides Rd, GypXVII, Rg2 and PPT after 96 h transformation with 38–96% yields. The four products showed improved anti-inflammatory activities by using lipopolysaccharide (LPS)-induced murine RAW 264.7 macrophages and the xylene-induced acute inflammatory model of mouse ear edema. The results indicated that they could dramatically attenuate the production of TNF-α more effectively than the precursors. Our study would provide an example of a unique and powerful microbial cell factory for efficiently converting both PPD-type and PPT-type ginsenosides to rare natural products, which extends the drug candidates as novel anti-inflammatory remedies.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation--the key step of inflammation.

          In the preliminary study, ginsenoside Rb1, a main constituent of the root of Panax ginseng (family Araliaceae), and its metabolite compound K inhibited a key factor of inflammation, nuclear transcription factor κB (NF-κB) activation, in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. When ginsenoside Rb1 or compound K were orally administered to 2,4,6-trinitrobenzene sulfuric acid (TNBS)-induced colitic mice, these agents inhibited colon shortening, macroscopic score, and colonic thickening. Furthermore, treatment with ginsenoside Rb1 or compound K at 20mg/kg inhibited colonic myeloperoxidase activity by 84% and 88%, respectively, as compared with TNBS alone (p<0.05), and also potently inhibited the expression of tumor necrosis factor-α, interleukin (IL)-1β and IL-6, but increased the expression of IL-10. Both ginsenoside Rb1 and compound K blocked the TNBS-induced expressions of COX-2 and iNOS and the activation of NF-κB in mice. When ginsenoside Rb1 or compound K was treated in LPS-induced murine peritoneal macrophages, these agents potently inhibited the expression of the proinflammatory cytokines. Ginsenoside Rb1 and compound K also significantly inhibited the activation of interleukin-1 receptor-associated kinase-1 (IRAK-1), IKK-β, NF-κB, and MAP kinases (ERK, JNK, and p-38); however, interaction between LPS and Toll-like receptor-4, IRAK-4 activation and IRAK-2 activation were unaffected. Furthermore, compound K inhibited the production of proinflammatory cytokines more potently than did those of ginsenoside Rb1. On the basis of these findings, ginsenosides, particularly compounds K, could be used to treat inflammatory diseases, such as colitis, by targeting IRAK-1 activation. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases.

            Ginsenosides are the principal components responsible for the pharmaceutical activities of ginseng. The minor ginsenosides, which are also pharmaceutically active, can be produced via the hydrolysis of the sugar moieties in the major ginsenosides using acid hydrolytic, heating, microbial, and enzymatic transformation techniques. The enzymatic method has a profound potential for ginsenoside transformation, owing to its high specificity, yield, and productivity, and this method is increasingly being recognized as a useful tool in structural modification and metabolism studies. In this article, the transformation methods of ginsenosides, the characterization of microbial glycosidases with ginsenoside hydrolyzing activities, and the enzymatic production of minor ginsenosides are reviewed. Moreover, the conversions of ginsenosides using cell extracts from food microorganisms and recombinant thermostable beta-D-glycosidases are proposed as feasible methods for use in industrial processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biotransformation and metabolic profile of American ginseng saponins with human intestinal microflora by liquid chromatography quadrupole time-of-flight mass spectrometry.

              American ginseng is a widely used natural product. Ginseng products are usually taken orally, and human intestinal microflora may metabolize ginsenosides. Existing publications report the metabolite fates of ginsenosides. However, investigations on the comprehensive metabolic profile of American ginseng extract are absent because of the chemical complexity and limitation of analytical methods. In this work, we studied the biotransformation and metabolic profile of American ginseng extract by human intestinal microflora. Human fecal microflora was prepared from a healthy Chinese man and then anaerobically incubated with American ginseng sample at 37 °C for 24 h. A rapid and simple liquid-liquid extraction method was used for sample pretreatment. A highly sensitive and selective liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) method was used to characterize ginsenosides and related metabolites in the reaction samples. The LC-Q-TOF-MS provides superior data quality and advanced analytical capabilities for profiling, identifying, and characterizing complex metabolites in matrix-based biological samples. A total of 25 metabolites were detected, 13 of which were undoubtedly assigned by comparison with reference compounds, and 12 others were tentatively identified. The three most abundant metabolites are 20S-ginsenoside Rg3, ginsenoside F2 and compound K. The main metabolic pathways of ginseng saponins are deglycosylation reactions by intestinal microflora through stepwise cleavage of sugar moieties. Subsequent dehydration reactions also occur. Protopanaxadiol- and oleanane-type triterpenoids are easy to metabolize. The intestinal microbiota may play an important role in mediating the metabolism bioactivity of American ginseng.
                Bookmark

                Author and article information

                Contributors
                yushanshan001@aliyun.com
                yfeng2009@sjtu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                10 March 2017
                10 March 2017
                2017
                : 7
                : 138
                Affiliations
                [1 ]ISNI 0000 0004 0368 8293, GRID grid.16821.3c, State Key Laboratory of Microbial Metabolism, , School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, ; Shanghai, 200240 China
                [2 ]ISNI 0000 0004 1757 641X, GRID grid.440665.5, Jilin Ginseng Academy, , Changchun University of Chinese Medicine, ; Changchun, 130117 China
                [3 ]ISNI 0000 0004 1760 5735, GRID grid.64924.3d, College of Basic Medical Sciences, , Jilin University, ; Changchun, 130021 Jilin China
                [4 ]ISNI 0000 0004 1789 9163, GRID grid.27446.33, School of Life Sciences, , Northeast Normal University, ; Changchun, 130024 China
                Article
                262
                10.1038/s41598-017-00262-0
                5428039
                28273939
                9d063849-8bac-4111-8633-5bd2eacfb0ac
                © The Author(s) 2017

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 November 2016
                : 16 February 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article