10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hough Transform and Clustering for a 3-D Building Reconstruction with Tomographic SAR Point Clouds

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tomographic synthetic aperture radar (TomoSAR) produces 3-D point clouds with unavoidable noise or false targets that seriously deteriorate the quality of 3-D images and the building reconstruction over urban areas. In this paper, a Hough transform was adopted to detect the outline of a building; however, on one hand, the obtained outline of a building with Hough transform is broken, and on the other hand, some of these broken lines belong to the same segment of a building outline, but the parameters of these lines are slightly different. These problems will lead to that segment of a building outline being represented by multiple different parameters in the Hough transform. Therefore, an unsupervised clustering method was employed for clustering these line parameters. The lines gathered in the same cluster were considered to correspond to a same segment of a building outline. In this way, different line parameters corresponding to a segment of a building outline were integrated into one and then the continuous outline of the building in cloud points was obtained. Steps of the proposed data processing method were as follows. First, the Hough transform was made use of to detect the lines on the tomography plane in TomoSAR point clouds. These detected lines lay on the outline of the building, but they were broken due to the density variation of point clouds. Second, the lines detected using the Hough transform were grouped as a date set for training the building outline. Unsupervised clustering was utilized to classify the lines in several clusters. The cluster number was automatically determined via the unsupervised clustering algorithm, which meant the number of straight segments of the building edge was obtained. The lines in each cluster were considered to belong to the same straight segment of the building outline. Then, within each cluster, which represents a part or a segment of the building edge, a repaired straight line was constructed. Third, between each two clusters or each two segments of the building outline, the joint point was estimated by extending the two segments. Therefore, the building outline was obtained as completely as possible. Finally, taking the estimated building outline as the clustering center, supervised learning algorithm was used to classify the building cloud point and the noise (or false targets), then the building cloud point was refined. Then, our refined and unrefined data were fed into the neural network for building the 3-D construction. The comparison results show the correctness and the effectiveness of our improved method.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: not found
          • Article: not found

          Very High Resolution Spaceborne SAR Tomography in Urban Environment

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Tomographic SAR Inversion by $L_{1}$ -Norm Regularization—The Compressive Sensing Approach

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Change Detection in Hyperspectral Images Using Recurrent 3D Fully Convolutional Networks

              Hyperspectral change detection (CD) can be effectively performed using deep-learning networks. Although these approaches require qualified training samples, it is difficult to obtain ground-truth data in the real world. Preserving spatial information during training is difficult due to structural limitations. To solve such problems, our study proposed a novel CD method for hyperspectral images (HSIs), including sample generation and a deep-learning network, called the recurrent three-dimensional (3D) fully convolutional network (Re3FCN), which merged the advantages of a 3D fully convolutional network (FCN) and a convolutional long short-term memory (ConvLSTM). Principal component analysis (PCA) and the spectral correlation angle (SCA) were used to generate training samples with high probabilities of being changed or unchanged. The strategy assisted in training fewer samples of representative feature expression. The Re3FCN was mainly comprised of spectral–spatial and temporal modules. Particularly, a spectral–spatial module with a 3D convolutional layer extracts the spectral–spatial features from the HSIs simultaneously, whilst a temporal module with ConvLSTM records and analyzes the multi-temporal HSI change information. The study first proposed a simple and effective method to generate samples for network training. This method can be applied effectively to cases with no training samples. Re3FCN can perform end-to-end detection for binary and multiple changes. Moreover, Re3FCN can receive multi-temporal HSIs directly as input without learning the characteristics of multiple changes. Finally, the network could extract joint spectral–spatial–temporal features and it preserved the spatial structure during the learning process through the fully convolutional structure. This study was the first to use a 3D FCN and a ConvLSTM for the remote-sensing CD. To demonstrate the effectiveness of the proposed CD method, we performed binary and multi-class CD experiments. Results revealed that the Re3FCN outperformed the other conventional methods, such as change vector analysis, iteratively reweighted multivariate alteration detection, PCA-SCA, FCN, and the combination of 2D convolutional layers-fully connected LSTM.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                05 December 2019
                December 2019
                : 19
                : 24
                : 5378
                Affiliations
                School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; lifang@ 123456bucea.edu.cn (F.L.); panglei@ 123456bucea.edu.cn (L.P.); guoziye97@ 123456163.com (Z.G.)
                Author notes
                [* ]Correspondence: liuhui@ 123456bucea.edu.cn ; Tel.: +86-138-1039-1342
                Author information
                https://orcid.org/0000-0001-8045-6777
                Article
                sensors-19-05378
                10.3390/s19245378
                6960941
                31817536
                9d809f85-e762-4a69-8ba7-3c83476c22a9
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 28 October 2019
                : 02 December 2019
                Categories
                Article

                Biomedical engineering
                tomosar cloud point,supervised algorithm,unsupervised clustering,3-d reconstruction,hough transform,machine learning

                Comments

                Comment on this article