1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Unifying climate change biology across realms and taxa

      , ,
      Trends in Ecology & Evolution
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Impacts of climate warming on terrestrial ectotherms across latitude.

          The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation.

            Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species' vulnerability to climate warming and extreme events.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Climate change. Accelerating extinction risk from climate change.

              Mark Urban (2015)
              Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Trends in Ecology & Evolution
                Trends in Ecology & Evolution
                Elsevier BV
                01695347
                May 2022
                May 2022
                Article
                10.1016/j.tree.2022.04.011
                9ebd2208-942a-44ae-838f-f2d982c6e398
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article