6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Systematic Oxidative Stress Score Predicts the Survival of Patients with Early-Stage Lung Adenocarcinoma

      , , , , , , , , , ,
      Cancers
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study aimed to construct an effective nomogram based on the clinical and oxidative stress-related characteristics to predict the prognosis of stage I lung adenocarcinoma (LUAD). A retrospective study was performed on 955 eligible patients with stage I LUAD after surgery at our hospital. The relationship between systematic-oxidative-stress biomarkers and the prognosis was analyzed. The systematic oxidative stress score (SOS) was established based on three biochemical indicators, including serum creatinine (CRE), lactate dehydrogenase (LDH), and uric acid (UA). SOS was an independent prognostic factor for stage I LUADs, and the nomogram based on SOS and clinical characteristics could accurately predict the prognosis of these patients. The nomogram had a high concordance index (C-index) (0.684, 95% CI, 0.656–0.712), and the calibration curves for recurrence-free survival (RFS) probabilities showed a strong agreement between the nomogram prediction and actual observation. Additionally, the patients were divided into two groups according to the cut-off value of risk points based on the nomogram, and a significant difference in RFS was observed between the high-risk and low-risk groups (p < 0.0001). SOS is an independent prognostic indicator for stage I LUAD. These things considered, the constructed nomogram based on SOS could accurately predict the survival of those patients.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inflammation and Cancer: Triggers, Mechanisms, and Consequences

            Inflammation predisposes to the development of cancer and promotes all stages of tumorigenesis. Cancer cells as well as surrounding stromal and inflammatory cells engage in well-orchestrated reciprocal interactions to form an inflammatory tumor microenvironment (TME). Cells within the TME are highly plastic, continuously changing their phenotypic and functional characteristics. Here we review the origins of inflammation in tumors, and the mechanisms whereby inflammation drives tumor initiation, growth, progression and metastasis. We discuss how tumor promoting inflammation closely resembles inflammatory processes typically found during development, immunity, maintenance of tissue homeostasis or tissue repair, and illuminate the distinctions between tissue-protective and pro-tumorigenic inflammation, including spatio-temporal considerations. Defining the cornerstone rules of engagement governing molecular and cellular mechanisms of tumor-promoting inflammation will be essential for the further development of anti-cancer therapies. Grivennikov and Greten review the mechanisms underlying the initiation of pro-tumorigenic inflammatory responses, how these evolve throughout the different stages of tumor development and the plasticity of the cells within the tumor microenvironment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidative stress, inflammation, and cancer: how are they linked?

              Extensive research during the past 2 decades has revealed the mechanism by which continued oxidative stress can lead to chronic inflammation, which in turn could mediate most chronic diseases including cancer, diabetes, and cardiovascular, neurological, and pulmonary diseases. Oxidative stress can activate a variety of transcription factors including NF-κB, AP-1, p53, HIF-1α, PPAR-γ, β-catenin/Wnt, and Nrf2. Activation of these transcription factors can lead to the expression of over 500 different genes, including those for growth factors, inflammatory cytokines, chemokines, cell cycle regulatory molecules, and anti-inflammatory molecules. How oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion, angiogenesis, and stem cell survival is the focus of this review. Overall, observations to date suggest that oxidative stress, chronic inflammation, and cancer are closely linked. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                CANCCT
                Cancers
                Cancers
                MDPI AG
                2072-6694
                March 2023
                March 11 2023
                : 15
                : 6
                : 1718
                Article
                10.3390/cancers15061718
                10099732
                36980604
                9f7fffb8-e969-4927-b036-7facfea89d49
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article