3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vaccinations for Colorectal Cancer: Progress, Strategies, and Novel Adjuvants

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although cancer is a leading cause of death, significant breakthroughs have been made in its treatment in recent years. In particular, increasingly effective cancer vaccines are being developed, including some for colorectal cancer. There are also currently a variety of compounds that can act as adjuvants, such as signalling molecules called cytokines. Other adjuvants target and inhibit the specific mechanisms by which cancers evade the immune system. One of them is a galectin inhibitor, which targets galectins—proteins produced by cancer cells that can cause the death of immune cells. Likewise, immune checkpoint inhibitors affect immune checkpoints—natural host proteins that usually control inflammation but can be exploited by cancers to weaken the body’s defences. Equally, regulatory T cells may contribute to the progression of cancer by inhibiting the functions of other T cells. The main advantages of cancer vaccines include their low toxicity and their ability to strengthen the immune system. Nevertheless, significant limitations include their slow effects and their inability to treat cancer at times due to immunosuppression. Ultimately, ongoing trials provide hope for the development of more effective methods of immunotherapeutic inoculation that can target a greater variety of cancers.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          The blockade of immune checkpoints in cancer immunotherapy.

          Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells.

            T cell immunity directed against tumor-encoded amino acid substitutions occurs in some melanoma patients. This implicates missense mutations as a source of patient-specific neoantigens. However, a systematic evaluation of these putative neoantigens as targets of antitumor immunity is lacking. Moreover, it remains unknown whether vaccination can augment such responses. We found that a dendritic cell vaccine led to an increase in naturally occurring neoantigen-specific immunity and revealed previously undetected human leukocyte antigen (HLA) class I-restricted neoantigens in patients with advanced melanoma. The presentation of neoantigens by HLA-A*02:01 in human melanoma was confirmed by mass spectrometry. Vaccination promoted a diverse neoantigen-specific T cell receptor (TCR) repertoire in terms of both TCR-β usage and clonal composition. Our results demonstrate that vaccination directed at tumor-encoded amino acid substitutions broadens the antigenic breadth and clonal diversity of antitumor immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Colorectal Cancer and Nutrition

              Colorectal Cancer is the third most common cancer diagnosed in the US. While the incidence and the mortality rate of colorectal cancer has decreased due to effective cancer screening measures, there has been an increase in number of young patients diagnosed in colon cancer due to unclear reasons at this point of time. While environmental and genetic factors play a major role in the pathogenesis of colon cancer, extensive research has suggested that nutrition may play both a causal and protective role in the development of colon cancer. In this review article, we aim to provide a review of factors that play a major role in development of colorectal cancer.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                11 July 2019
                July 2019
                : 20
                : 14
                : 3403
                Affiliations
                [1 ]School of Medical Science and Menzies Health Institute Queensland, Gold Coast campus, Griffith University, Southport, QLD 4222, Australia
                [2 ]School of Allied Health, Australian Catholic University, Banyo, QLD 4014, Australia
                Author notes
                [* ]Correspondence: m.wei@ 123456griffith.edu.au ; Tel.: +61-7-56780745
                Article
                ijms-20-03403
                10.3390/ijms20143403
                6678766
                31373300
                a087cedd-8307-44b0-bbe4-0b09b46f667e
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 July 2019
                : 09 July 2019
                Categories
                Review

                Molecular biology
                cancer vaccine,adjuvant,cytokine,galectin inhibitor,colorectal cancer,immune checkpoint inhibitor,regulatory t cell,immunotherapy

                Comments

                Comment on this article