23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human pluripotent stem cell models of cardiac disease: from mechanisms to therapies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          It is now a decade since human induced pluripotent stem cells (hiPSCs) were first described. The reprogramming of adult somatic cells to a pluripotent state has become a robust technology that has revolutionised our ability to study human diseases. Crucially, these cells capture all the genetic aspects of the patient from which they were derived. Combined with advances in generating the different cell types present in the human heart, this has opened up new avenues to study cardiac disease in humans and investigate novel therapeutic approaches to treat these pathologies. Here, we provide an overview of the current state of the field regarding the generation of cardiomyocytes from human pluripotent stem cells and methods to assess them functionally, an essential requirement when investigating disease and therapeutic outcomes. We critically evaluate whether treatments suggested by these in vitro models could be translated to clinical practice. Finally, we consider current shortcomings of these models and propose methods by which they could be further improved.

          Abstract

          Summary: This Review discusses how human pluripotent stem cells have revolutionised the study of cardiac disease, highlighting their impact in investigating pathogenesis and their use in drug discovery, as well as current challenges facing the field.

          Related collections

          Most cited references144

          • Record: found
          • Abstract: found
          • Article: not found

          Genetically encoded indicators of neuronal activity.

          Experimental efforts to understand how the brain represents, stores and processes information require high-fidelity recordings of multiple different forms of neural activity within functional circuits. Thus, creating improved technologies for large-scale recordings of neural activity in the live brain is a crucial goal in neuroscience. Over the past two decades, the combination of optical microscopy and genetically encoded fluorescent indicators has become a widespread means of recording neural activity in nonmammalian and mammalian nervous systems, transforming brain research in the process. In this review, we describe and assess different classes of fluorescent protein indicators of neural activity. We first discuss general considerations in optical imaging and then present salient characteristics of representative indicators. Our focus is on how indicator characteristics relate to their use in living animals and on likely areas of future progress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5.

            Cyclin-dependent kinases (cdk) play an essential role in the intracellular control of the cell division cycle (cdc). These kinases and their regulators are frequently deregulated in human tumours. Enzymatic screening has recently led to the discovery of specific inhibitors of cyclin-dependent kinases, such as butyrolactone I, flavopiridol and the purine olomoucine. Among a series of C2, N6, N9-substituted adenines tested on purified cdc2/cyclin B, 2-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (roscovitine) displays high efficiency and high selectivity towards some cyclin-dependent kinases. The kinase specificity of roscovitine was investigated with 25 highly purified kinases (including protein kinase A, G and C isoforms, myosin light-chain kinase, casein kinase 2, insulin receptor tyrosine kinase, c-src, v-abl). Most kinases are not significantly inhibited by roscovitine. cdc2/cyclin B, cdk2/cyclin A, cdk2/cyclin E and cdk5/p35 only are substantially inhibited (IC50 values of 0.65, 0.7, 0.7 and 0.2 microM, respectively). cdk4/cyclin D1 and cdk6/cyclin D2 are very poorly inhibited by roscovitine (IC50 > 100 microM). Extracellular regulated kinases erk1 and erk2 are inhibited with an IC50 of 34 microM and 14 microM, respectively. Roscovitine reversibly arrests starfish oocytes and sea urchin embryos in late prophase. Roscovitine inhibits in vitro M-phase-promoting factor activity and in vitro DNA synthesis in Xenopus egg extracts. It blocks progesterone-induced oocyte maturation of Xenopus oocytes and in vivo phosphorylation of the elongation factor eEF-1. Roscovitine inhibits the proliferation of mammalian cell lines with an average IC50 of 16 microM. In the presence of roscovitine L1210 cells arrest in G1 and accumulate in G2. In vivo phosphorylation of vimentin on Ser55 by cdc2/cyclin B is inhibited by roscovitine. Through its unique selectivity for some cyclin-dependent kinases, roscovitine provides a useful antimitotic reagent for cell cycle studies and may prove interesting to control cells with deregulated cdc2, cdk2 or cdk5 kinase activities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.

              Characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure, dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy in patients. DCM is the most common diagnosis leading to heart transplantation and places a significant burden on healthcare worldwide. The advent of induced pluripotent stem cells (iPSCs) offers an exceptional opportunity for creating disease-specific cellular models, investigating underlying mechanisms, and optimizing therapy. Here, we generated cardiomyocytes from iPSCs derived from patients in a DCM family carrying a point mutation (R173W) in the gene encoding sarcomeric protein cardiac troponin T. Compared to control healthy individuals in the same family cohort, cardiomyocytes derived from iPSCs from DCM patients exhibited altered regulation of calcium ion (Ca(2+)), decreased contractility, and abnormal distribution of sarcomeric α-actinin. When stimulated with a β-adrenergic agonist, DCM iPSC-derived cardiomyocytes showed characteristics of cellular stress such as reduced beating rates, compromised contraction, and a greater number of cells with abnormal sarcomeric α-actinin distribution. Treatment with β-adrenergic blockers or overexpression of sarcoplasmic reticulum Ca(2+) adenosine triphosphatase (Serca2a) improved the function of iPSC-derived cardiomyocytes from DCM patients. Thus, iPSC-derived cardiomyocytes from DCM patients recapitulate to some extent the morphological and functional phenotypes of DCM and may serve as a useful platform for exploring disease mechanisms and for drug screening.
                Bookmark

                Author and article information

                Journal
                Dis Model Mech
                Dis Model Mech
                DMM
                dmm
                Disease Models & Mechanisms
                The Company of Biologists Ltd
                1754-8403
                1754-8411
                1 September 2017
                1 September 2017
                : 10
                : 9
                : 1039-1059
                Affiliations
                [1 ]Department of Anatomy and Embryology, Leiden University Medical Center , 2300 RC Leiden, The Netherlands
                [2 ]Department of Cardiology, Leiden University Medical Center , 2300 RC Leiden, The Netherlands
                Author notes
                [*]

                These authors contributed equally to this work

                []Author for correspondence ( r.p.davis@ 123456lumc.nl )
                Author information
                http://orcid.org/0000-0002-7917-9423
                Article
                DMM030320
                10.1242/dmm.030320
                5611968
                28883014
                a15487bb-fcbe-4aa0-96cb-4658682fa5fa
                © 2017. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                Funding
                Funded by: H2020 European Research Council, http://dx.doi.org/10.13039/100010663;
                Award ID: #638030
                Funded by: Nederlandse Organisatie voor Wetenschappelijk Onderzoek, http://dx.doi.org/10.13039/501100003246;
                Award ID: #91715303
                Categories
                301
                Review

                Molecular medicine
                cardiac arrhythmia,cardiometabolic disease,cardiomyopathy,disease model,genetic cardiac disease,pluripotent stem cell,hipsc

                Comments

                Comment on this article