51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte/Macrophage Colony-Stimulating Factor by Breast Cancer Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Monocyte chemoattractant protein-1 (MCP-1)/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup) markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly upregulated neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2–3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage CSF, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently upregulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly upregulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Conditional gene targeting in macrophages and granulocytes using LysMcre mice.

          Conditional mutagenesis in mice has recently been made possible through the combination of gene targeting techniques and site-directed mutagenesis, using the bacteriophage P1-derived Cre/loxP recombination system. The versatility of this approach depends on the availability of mouse mutants in which the recombinase Cre is expressed in the appropriate cell lineages or tissues. Here we report the generation of mice that express Cre in myeloid cells due to targeted insertion of the cre cDNA into their endogenous M lysozyme locus. In double mutant mice harboring both the LysMcre allele and one of two different loxP-flanked target genes tested, a deletion efficiency of 83-98% was determined in mature macrophages and near 100% in granulocytes. Partial deletion (16%) could be detected in CD11c+ splenic dendritic cells which are closely related to the monocyte/macrophage lineage. In contrast, no significant deletion was observed in tail DNA or purified T and B cells. Taken together, LysMcre mice allow for both specific and highly efficient Cre-mediated deletion of loxP-flanked target genes in myeloid cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colony-stimulating factors in inflammation and autoimmunity.

            Although they were originally defined as haematopoietic-cell growth factors, colony-stimulating factors (CSFs) have been shown to have additional functions by acting directly on mature myeloid cells. Recent data from animal models indicate that the depletion of CSFs has therapeutic benefit in many inflammatory and/or autoimmune conditions and as a result, early-phase clinical trials targeting granulocyte/macrophage colony-stimulating factor and macrophage colony-stimulating factor have now commenced. The distinct biological features of CSFs offer opportunities for specific targeting, but with some associated risks. Here, I describe these biological features, discuss the probable specific outcomes of targeting CSFs in vivo and highlight outstanding questions that need to be addressed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis.

              Metastatic progression depends on genetic alterations intrinsic to cancer cells as well as the inflammatory microenvironment of advanced tumours. To understand how cancer cells affect the inflammatory microenvironment, we conducted a biochemical screen for macrophage-activating factors secreted by metastatic carcinomas. Here we show that, among the cell lines screened, Lewis lung carcinoma (LLC) were the most potent macrophage activators leading to production of interleukin-6 (IL-6) and tumour-necrosis factor-alpha (TNF-alpha) through activation of the Toll-like receptor (TLR) family members TLR2 and TLR6. Both TNF-alpha and TLR2 were found to be required for LLC metastasis. Biochemical purification of LLC-conditioned medium (LCM) led to identification of the extracellular matrix proteoglycan versican, which is upregulated in many human tumours including lung cancer, as a macrophage activator that acts through TLR2 and its co-receptors TLR6 and CD14. By activating TLR2:TLR6 complexes and inducing TNF-alpha secretion by myeloid cells, versican strongly enhances LLC metastatic growth. These results explain how advanced cancer cells usurp components of the host innate immune system, including bone-marrow-derived myeloid progenitors, to generate an inflammatory microenvironment hospitable for metastatic growth.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                20 January 2016
                2016
                : 7
                : 2
                Affiliations
                [1] 1Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute , Frederick, MD, USA
                [2] 2Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University , Okayama, Japan
                [3] 3Laboratory of Human Retrovirology and Immunoinformatics, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research , Frederick, MD, USA
                [4] 4Engineering Research Center for Cell and Therapeutic Antibody of Ministry of Education, School of Pharmacy, Shanghai Jiaotong University , Shanghai, China
                Author notes

                Edited by: Klaus Ley, La Jolla Institute for Allergy and Immunology, USA

                Reviewed by: Silvano Sozzani, University of Brescia, Italy; Alexander Zarbock, University of Münster, Germany

                *Correspondence: Teizo Yoshimura, yoshimut@ 123456okayama-u.ac.jp

                Specialty section: This article was submitted to Chemoattractants, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2016.00002
                4718995
                26834744
                a16fad84-707d-48d9-916d-56a8e75f4791
                Copyright © 2016 Yoshimura, Imamichi, Weiss, Sato, Li, Matsukawa and Wang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 August 2015
                : 05 January 2016
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 48, Pages: 13, Words: 7986
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: HHSN261200800001E
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81470073
                Categories
                Immunology
                Original Research

                Immunology
                monocytes/macrophages,chemokines,inflammation,tumor microenvironment,breast cancer
                Immunology
                monocytes/macrophages, chemokines, inflammation, tumor microenvironment, breast cancer

                Comments

                Comment on this article