10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modern post-mortem imaging: an update on recent developments

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Modern post-mortem investigations use an increasing number of digital imaging methods, which can be collected under the term “post-mortem imaging”. Most methods of forensic imaging are from the radiology field and are therefore techniques that show the interior of the body with technologies such as X-ray or magnetic resonance imaging. To digitally image the surface of the body, other techniques are regularly applied, e.g. three-dimensional (3D) surface scanning (3DSS) or photogrammetry. Today's most frequently used techniques include post-mortem computed tomography (PMCT), post-mortem magnetic resonance imaging (PMMR), post-mortem computed tomographic angiography (PMCTA) and 3DSS or photogrammetry. Each of these methods has specific advantages and limitations. Therefore, the indications for using each method are different. While PMCT gives a rapid overview of the interior of the body and depicts the skeletal system and radiopaque foreign bodies, PMMR allows investigation of soft tissues and parenchymal organs. PMCTA is the method of choice for viewing the vascular system and detecting sources of bleeding. However, none of those radiological methods allow a detailed digital view of the body's surface, which makes 3DSS the best choice for such a purpose. If 3D surface scanners are not available, photogrammetry is an alternative. This review article gives an overview of different imaging techniques and explains their applications, advantages and limitations. We hope it will improve understanding of the methods.

          Related collections

          Most cited references98

          • Record: found
          • Abstract: found
          • Article: not found

          An evaluation of three commercially available metal artifact reduction methods for CT imaging.

          Three commercial metal artifact reduction methods were evaluated for use in computed tomography (CT) imaging in the presence of clinically realistic metal implants: Philips O-MAR, GE's monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI monochromatic imaging with metal artifact reduction software applied (MARs). Each method was evaluated according to CT number accuracy, metal size accuracy, and streak artifact severity reduction by using several phantoms, including three anthropomorphic phantoms containing metal implants (hip prosthesis, dental fillings and spinal fixation rods). All three methods showed varying degrees of success for the hip prosthesis and spinal fixation rod cases, while none were particularly beneficial for dental artifacts. Limitations of the methods were also observed. MARs underestimated the size of metal implants and introduced new artifacts in imaging planes beyond the metal implant when applied to dental artifacts, and both the O-MAR and MARs algorithms induced artifacts for spinal fixation rods in a thoracic phantom. Our findings suggest that all three artifact mitigation methods may benefit patients with metal implants, though they should be used with caution in certain scenarios.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VIRTOPSY: minimally invasive, imaging-guided virtual autopsy.

            Invasive "body-opening" autopsy represents the traditional means of postmortem investigation in humans. However, modern cross-sectional imaging techniques can supplement and may even partially replace traditional autopsy. Computed tomography (CT) is the imaging modality of choice for two- and three-dimensional documentation and analysis of autopsy findings including fracture systems, pathologic gas collections (eg, air embolism, subcutaneous emphysema after trauma, hyperbaric trauma, decomposition effects), and gross tissue injury. Various postprocessing techniques can provide strong forensic evidence for use in legal proceedings. Magnetic resonance (MR) imaging has had a greater impact in demonstrating soft-tissue injury, organ trauma, and nontraumatic conditions. However, the differences in morphologic features and signal intensity characteristics seen at antemortem versus postmortem MR imaging have not yet been studied systematically. The documentation and analysis of postmortem findings with CT and MR imaging and postprocessing techniques ("virtopsy") is investigator independent, objective, and noninvasive and will lead to qualitative improvements in forensic pathologic investigation. Future applications of this approach include the assessment of morbidity and mortality in the general population and, perhaps, routine screening of bodies prior to burial. Copyright RSNA, 2006.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Age determination by magnetic resonance imaging of the wrist in adolescent male football players.

              In football there are established age-related tournaments for males and females to guarantee equal chances within the game for all the different age groups. To prevent participation in the incorrect age group, and owing to the fact that in some Asian and African countries registration at birth is not compulsory, other methods of age determination need to be available. Standard radiographs of the left wrist have been used for assessment of skeletal age for many years. This is, however, not ethical in the sporting environment. To study the possible use of magnetic resonance imaging (MRI), which has no radiation risk, in estimating the age of healthy adolescent football players. The examination protocol was applied in four countries using, their respective MRI equipment using a 1-T or 1.5-T magnet and a wrist coil. 496 healthy male adolescent football players between the ages of 14 and 19 years from Switzerland, Malaysia, Algeria and Argentina were selected for the study. The degree of fusion of the left distal radial physis was determined by three independent raters by a newly developed grading system which can be used in future MRI epiphysial fusion grading studies. The inter-rater reliability for grading was high (r = 0.91 and 0.92); all correlations were highly significant (p<0.001). The average age increased with a higher grading of fusion, and the correlation between age and grade of fusion was highly significant (r = 0.69, p<0.001). Only one player (0.8%) in the 16-year-old age group was graded as completely fused. MRI of the wrist offers an alternative as a non-invasive method of age determination in 14-19-year-old male adolescents. The grading system presented here clearly identifies the skeletal maturity by complete fusion in all MRI slices, which eliminates any risk associated with standard radiographic rating as determined by the International Atomic Energy Agency.
                Bookmark

                Author and article information

                Journal
                Forensic Sci Res
                Forensic Sci Res
                TFSR
                tfsr20
                Forensic sciences research
                Taylor & Francis
                2096-1790
                2471-1411
                2017
                07 June 2017
                : 2
                : 2 , Special Issue on Forensic Imaging Edited by Silke Grabherr
                : 52-64
                Affiliations
                [a ]University Centre of Legal Medicine Lausanne-Geneva , Lausanne, Switzerland
                [b ]Service of Legal Medicine, Central Institute of Hospitals , Sion, Switzerland
                Author notes
                Article
                1330738
                10.1080/20961790.2017.1330738
                6197109
                30483621
                a1a90ce8-54df-49f6-a2b8-f77823c23d1c
                © 2017 The Author(s). Published by Taylor & Francis Group on behalf of the Institute of Forensic Science, Ministry of Justice, People's Republic of China.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 28 February 2017
                : 05 May 2017
                Page count
                Figures: 4, Tables: 1, References: 107, Pages: 13
                Categories
                Authoritative Review

                forensic science,forensic imaging,post-mortem radiology,post-mortem computed tomography,post-mortem magnetic resonance imaging,3d scanning,post-mortem angiography,photogrammetry

                Comments

                Comment on this article