29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Discrimination of multilocus sequence typing-based Campylobacter jejuni subgroups by MALDI-TOF mass spectrometry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Campylobacter jejuni, the most common bacterial pathogen causing gastroenteritis, shows a wide genetic diversity. Previously, we demonstrated by the combination of multi locus sequence typing (MLST)-based UPGMA-clustering and analysis of 16 genetic markers that twelve different C. jejuni subgroups can be distinguished. Among these are two prominent subgroups. The first subgroup contains the majority of hyperinvasive strains and is characterized by a dimeric form of the chemotaxis-receptor Tlp7 m+c. The second has an extended amino acid metabolism and is characterized by the presence of a periplasmic asparaginase ( ansB) and gamma-glutamyl-transpeptidase ( ggt).

          Results

          Phyloproteomic principal component analysis (PCA) hierarchical clustering of MALDI-TOF based intact cell mass spectrometry (ICMS) spectra was able to group particular C. jejuni subgroups of phylogenetic related isolates in distinct clusters. Especially the aforementioned Tlp7 m+c + and ansB +/ ggt + subgroups could be discriminated by PCA. Overlay of ICMS spectra of all isolates led to the identification of characteristic biomarker ions for these specific C. jejuni subgroups. Thus, mass peak shifts can be used to identify the C. jejuni subgroup with an extended amino acid metabolism.

          Conclusions

          Although the PCA hierarchical clustering of ICMS-spectra groups the tested isolates into a different order as compared to MLST-based UPGMA-clustering, the isolates of the indicator-groups form predominantly coherent clusters. These clusters reflect phenotypic aspects better than phylogenetic clustering, indicating that the genes corresponding to the biomarker ions are phylogenetically coupled to the tested marker genes. Thus, PCA clustering could be an additional tool for analyzing the relatedness of bacterial isolates.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

          Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry accurately identifies both selected bacteria and bacteria in select clinical situations. It has not been evaluated for routine use in the clinic. We prospectively analyzed routine MALDI-TOF mass spectrometry identification in parallel with conventional phenotypic identification of bacteria regardless of phylum or source of isolation. Discrepancies were resolved by 16S ribosomal RNA and rpoB gene sequence-based molecular identification. Colonies (4 spots per isolate directly deposited on the MALDI-TOF plate) were analyzed using an Autoflex II Bruker Daltonik mass spectrometer. Peptidic spectra were compared with the Bruker BioTyper database, version 2.0, and the identification score was noted. Delays and costs of identification were measured. Of 1660 bacterial isolates analyzed, 95.4% were correctly identified by MALDI-TOF mass spectrometry; 84.1% were identified at the species level, and 11.3% were identified at the genus level. In most cases, absence of identification (2.8% of isolates) and erroneous identification (1.7% of isolates) were due to improper database entries. Accurate MALDI-TOF mass spectrometry identification was significantly correlated with having 10 reference spectra in the database (P=.01). The mean time required for MALDI-TOF mass spectrometry identification of 1 isolate was 6 minutes for an estimated 22%-32% cost of current methods of identification. MALDI-TOF mass spectrometry is a cost-effective, accurate method for routine identification of bacterial isolates in or =10 reference spectra per bacterial species and a 1.9 identification score (Brucker system). It may replace Gram staining and biochemical identification in the near future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multilocus sequence typing system for Campylobacter jejuni.

            The gram-negative bacterium Campylobacter jejuni has extensive reservoirs in livestock and the environment and is a frequent cause of gastroenteritis in humans. To date, the lack of (i) methods suitable for population genetic analysis and (ii) a universally accepted nomenclature has hindered studies of the epidemiology and population biology of this organism. Here, a multilocus sequence typing (MLST) system for this organism is described, which exploits the genetic variation present in seven housekeeping loci to determine the genetic relationships among isolates. The MLST system was established using 194 C. jejuni isolates of diverse origins, from humans, animals, and the environment. The allelic profiles, or sequence types (STs), of these isolates were deposited on the Internet (http://mlst.zoo.ox.ac.uk), forming a virtual isolate collection which could be continually expanded. These data indicated that C. jejuni is genetically diverse, with a weakly clonal population structure, and that intra- and interspecies horizontal genetic exchange was common. Of the 155 STs observed, 51 (26% of the isolate collection) were unique, with the remainder of the collection being categorized into 11 lineages or clonal complexes of related STs with between 2 and 56 members. In some cases membership in a given lineage or ST correlated with the possession of a particular Penner HS serotype. Application of this approach to further isolate collections will enable an integrated global picture of C. jejuni epidemiology to be established and will permit more detailed studies of the population genetics of this organism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms.

              Campylobacter jejuni has long been recognized as a cause of bacterial food-borne illness, and surprisingly, it remains the most prevalent bacterial food-borne pathogen in the industrial world to date. Natural reservoirs for this Gram-negative, spiral-shaped bacterium are wild birds, whose intestines offer a suitable biological niche for the survival and dissemination of C. jejuni Chickens become colonized shortly after birth and are the most important source for human infection. In the last decade, effective intervention strategies to limit infections caused by this elusive pathogen were hindered mainly because of a paucity in understanding the virulence mechanisms of C. jejuni and in part, unavailability of an adequate animal model for the disease. However, recent developments in deciphering molecular mechanisms of virulence of C. jejuni made it clear that C. jejuni is a unique pathogen, being able to execute N-linked glycosylation of more than 30 proteins related to colonization, adherence, and invasion. Moreover, the flagellum is not only depicted to facilitate motility but as well secretion of Campylobacter invasive antigens (Cia). The only toxin of C. jejuni, the so-called cytolethal distending toxin (CdtA,B,C), seems to be important for cell cycle control and induction of host cell apoptosis and has been recognized as a major pathogenicity-associated factor. In contrast to other diarrhoea-causing bacteria, no other classical virulence factors have yet been identified in C. jejuni. Instead, host factors seem to play a major role for pathogenesis of campylobacteriosis of man. Indeed, several lines of evidence suggest exploitation of different adaptation strategies by this pathogen depending on its requirement, whether to establish itself in the natural avian reservoir or during the course of human infection. (c) 2009 Elsevier GmbH. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Microbiol
                BMC Microbiol
                BMC Microbiology
                BioMed Central
                1471-2180
                2013
                7 November 2013
                : 13
                : 247
                Affiliations
                [1 ]UMG-Labor/Institut für Medizinische Mikrobiologie, Universitätsmedizin Göttingen, Kreuzbergring 57, 37075, Göttingen, Germany
                [2 ]UMG-Labor/Institut für Klinische Chemie - Zentrallabor, Universitätsmedizin Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
                Article
                1471-2180-13-247
                10.1186/1471-2180-13-247
                4228279
                24195572
                a1bd2928-8d87-4e1a-a23e-5aa37ae514ee
                Copyright © 2013 Zautner et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 July 2013
                : 30 October 2013
                Categories
                Research Article

                Microbiology & Virology
                maldi-tof species identification,phyloproteomics,multilocus sequence typing,mlst,intact cell mass spectrometry,icms,principal component analysis,pca,campylobacter jejuni

                Comments

                Comment on this article