22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Paralytic shellfish toxin content is related to genomic sxtA4 copy number in Alexandrium minutum strains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dinoflagellates are microscopic aquatic eukaryotes with huge genomes and an unusual cell regulation. For example, most genes are present in numerous copies and all copies seem to be obligatorily transcribed. The consequence of the gene copy number (CPN) for final protein synthesis is, however, not clear. One such gene is sxtA, the starting gene of paralytic shellfish toxin (PST) synthesis. PSTs are small neurotoxic compounds that can accumulate in the food chain and cause serious poisoning incidences when ingested. They are produced by dinoflagellates of the genera Alexandrium, Gymnodium, and Pyrodinium. Here we investigated if the genomic CPN of sxtA4 is related to PST content in Alexandrium minutum cells. SxtA4 is the 4th domain of the sxtA gene and its presence is essential for PST synthesis in dinoflagellates. We used PST and genome size measurements as well as quantitative PCR to analyze sxtA4 CPN and toxin content in 15 A. minutum strains. Our results show a strong positive correlation between the sxtA4 CPN and the total amount of PST produced in actively growing A. minutum cells. This correlation was independent of the toxin profile produced, as long as the strain contained the genomic domains sxtA1 and sxtA4.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Comprehensive algorithm for quantitative real-time polymerase chain reaction.

          Quantitative real-time polymerase chain reactions (qRT-PCR) have become the method of choice for rapid, sensitive, quantitative comparison of RNA transcript abundance. Useful data from this method depend on fitting data to theoretical curves that allow computation of mRNA levels. Calculating accurate mRNA levels requires important parameters such as reaction efficiency and the fractional cycle number at threshold (CT) to be used; however, many algorithms currently in use estimate these important parameters. Here we describe an objective method for quantifying qRT-PCR results using calculations based on the kinetics of individual PCR reactions without the need of the standard curve, independent of any assumptions or subjective judgments which allow direct calculation of efficiency and CT. We use a four-parameter logistic model to fit the raw fluorescence data as a function of PCR cycles to identify the exponential phase of the reaction. Next, we use a three-parameter simple exponent model to fit the exponential phase using an iterative nonlinear regression algorithm. Within the exponential portion of the curve, our technique automatically identifies candidate regression values using the P-value of regression and then uses a weighted average to compute a final efficiency for quantification. For CT determination, we chose the first positive second derivative maximum from the logistic model. This algorithm provides an objective and noise-resistant method for quantification of qRT-PCR results that is independent of the specific equipment used to perform PCR reactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion.

            Nuclear genome size varies 300 000-fold, whereas transcriptome size varies merely 17-fold. In the largest genomes nearly all DNA is non-genic secondary DNA, mostly intergenic but also within introns. There is now compelling evidence that secondary DNA is functional, i.e. positively selected by organismal selection, not the purely neutral or 'selfish' outcome of mutation pressure. The skeletal DNA theory argued that nuclear volumes are genetically determined primarily by nuclear DNA amounts, modulated somewhat by genes affecting the degree of DNA packing or unfolding; the huge spread of nuclear genome sizes is the necessary consequence of the origin of the nuclear envelope and the nucleation of its assembly by DNA, plus the adaptively significant 300 000-fold range of cell volumes and selection for balanced growth by optimizing karyoplasmic volume ratios (essentially invariant with cell volume in growing/multiplying cells). This simple explanation of the C-value paradox is refined here in the light of new insights into the nature of heterochromatin and the nuclear lamina, the genetic control of cell volume, and large-scale eukaryote phylogeny, placing special emphasis on protist test cases of the basic principles of nuclear genome size evolution. and Expansion Intracellular parasites (e.g. Plasmodium, microsporidia) dwarfed their genomes by gene loss and eliminating virtually all secondary DNA. The primary driving forces for genome reduction are metabolic and spatial economy and cell multiplication speed. Most extreme nuclear shrinkage yielded genomes as tiny as 0.38 Mb (making the nuclear genome size range effectively 1.8 million-fold!) in some minute enslaved nuclei (nucleomorphs) of cryptomonads and chlorarachneans, chimaeric cells that also retain a separate normal large nucleus. The latter shows typical correlation between genome size and cell volume, but nucleomorphs do not despite co-existing in the same cell for >500 My. Thus mutation pressure does not inexorably increase genome size; selection can eliminate essentially all non-coding DNA if need be. Nucleomorphs and microsporidia even reduced gene size. Expansion of secondary DNA in the main nucleus, and in large-celled eukaryotes generally, must be positively selected for function. Ciliate nuclear dimorphism provides a key test that refutes the selfish DNA and strongly supports the skeletal DNA/karyoplasmic ratio interpretation of genome size evolution. The quantitatively proportional correlation between genome size and cell size cannot be explained by purely mutational theories, as eukaryote cell volumes are causally determined by cell cycle control genes, not by DNA amounts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria.

              Saxitoxin (STX) and its analogues cause the paralytic shellfish poisoning (PSP) syndrome, which afflicts human health and impacts coastal shellfish economies worldwide. PSP toxins are unique alkaloids, being produced by both prokaryotes and eukaryotes. Here we describe a candidate PSP toxin biosynthesis gene cluster (sxt) from Cylindrospermopsis raciborskii T3. The saxitoxin biosynthetic pathway is encoded by more than 35 kb, and comparative sequence analysis assigns 30 catalytic functions to 26 proteins. STX biosynthesis is initiated with arginine, S-adenosylmethionine, and acetate by a new type of polyketide synthase, which can putatively perform a methylation of acetate, and a Claisen condensation reaction between propionate and arginine. Further steps involve enzymes catalyzing three heterocyclizations and various tailoring reactions that result in the numerous isoforms of saxitoxin. In the absence of a gene transfer system in these microorganisms, we have revised the description of the known STX biosynthetic pathway, with in silico functional inferences based on sxt open reading frames combined with liquid chromatography-tandem mass spectrometry analysis of the biosynthetic intermediates. Our results indicate the evolutionary origin for the production of PSP toxins in an ancestral cyanobacterium with genetic contributions from diverse phylogenetic lineages of bacteria and provide a quantum addition to the catalytic collective available for future combinatorial biosyntheses. The distribution of these genes also supports the idea of the involvement of this gene cluster in STX production in various cyanobacteria.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                01 May 2015
                2015
                : 6
                : 404
                Affiliations
                [1] 1Department of Biosciences, University of Oslo Oslo, Norway
                [2] 2U.A. Microalgas Nocivas (Consejo Superior de Investigaciones Científicas – Instituto Español de Oceanografía), Instituto de Investigaciones Marinas Vigo, Spain
                [3] 3Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo Oslo, Norway
                [4] 4Laboratoire Adaptation et Diversité en Milieu Marin, CNRS, UMR 7144 Roscoff, France
                [5] 5Sorbonne Universités – Université Pierre et Marie Curie, UMR 7144 Roscoff, France
                [6] 6Aquatic Ecology, Lund University Lund, Sweden
                [7] 7U.A. Microalgas Nocivas (Consejo Superior de Investigaciones Científicas – Instituto Español de Oceanografía), Instituto Español de Oceanografía Vigo, Spain
                Author notes

                Edited by: Senjie Lin, University of Connecticut, USA

                Reviewed by: Deana Erdner, Uiversity of Texas at Austin, USA; Paulo João Vieira Vale, Instituto Português do Mar e da Atmosfera, Portugal

                *Correspondence: Anke Stüken, Department of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway anke.stuken@ 123456web.de

                This article was submitted to Aquatic Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2015.00404
                4416454
                25983733
                a1d3d7ac-3268-4411-8c4a-3ffc99fe6872
                Copyright © 2015 Stüken, Riobó, Franco, Jakobsen, Guillou and Figueroa.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 September 2014
                : 17 April 2015
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 60, Pages: 10, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                dinoflagellate,alexandrium,saxitoxin (stx),paralytic shellfish toxin (pst),sxta,gene dosage,copy number variation,genome size

                Comments

                Comment on this article