2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      No Evidence that Selection on Synonymous Codon Usage Affects Patterns of Protein Evolution in Bacteria

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bias in synonymous codon usage has been reported across all kingdoms of life. Evidence suggests that codon usage bias is often driven by selective pressures, typically for translational efficiency. These selective pressures have been shown to depress the rate at which synonymous sites evolve. We hypothesize that selection on synonymous codon use could also slow the rate of protein evolution if a non-synonymous mutation changes the codon from being preferred to unpreferred. We test this hypothesis by looking at patterns of protein evolution using polymorphism and substitution data in two bacterial species, Escherichia coli and Streptococcus pneumoniae. We find no evidence that non-synonymous mutations that change a codon from being unpreferred to preferred are more common than the opposite. Overall, selection on codon bias seems to have little influence over non-synonymous polymorphism or substitution patterns.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

          R. Edgar (2002)
          The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            ggplot2

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications.

              P. Sharp, W Li (1987)
              A simple, effective measure of synonymous codon usage bias, the Codon Adaptation Index, is detailed. The index uses a reference set of highly expressed genes from a species to assess the relative merits of each codon, and a score for a gene is calculated from the frequency of use of all codons in that gene. The index assesses the extent to which selection has been effective in moulding the pattern of codon usage. In that respect it is useful for predicting the level of expression of a gene, for assessing the adaptation of viral genes to their hosts, and for making comparisons of codon usage in different organisms. The index may also give an approximate indication of the likely success of heterologous gene expression.
                Bookmark

                Author and article information

                Contributors
                Role: Associate Editor
                Journal
                Genome Biol Evol
                Genome Biol Evol
                gbe
                Genome Biology and Evolution
                Oxford University Press (US )
                1759-6653
                February 2024
                27 December 2023
                27 December 2023
                : 16
                : 2
                : evad232
                Affiliations
                School of Life Sciences, University of Sussex , Brighton, UK
                School of Life Sciences, University of Sussex , Brighton, UK
                Author notes
                Author information
                https://orcid.org/0000-0002-2838-9113
                https://orcid.org/0000-0001-5527-8729
                Article
                evad232
                10.1093/gbe/evad232
                10849182
                38149940
                a2681763-ea1e-423f-8c07-92939213d3a6
                © The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 December 2023
                : 07 February 2024
                Page count
                Pages: 12
                Categories
                Article
                AcademicSubjects/SCI01130
                AcademicSubjects/SCI01140

                Genetics
                codon usage bias,natural selection,bacteria,protein evolution,mutation bias,biased gene conversion

                Comments

                Comment on this article