38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          High mobility group box 1 (HMGB1) protein, originally described as a DNA-binding protein that stabilizes nucleosomes and facilitates transcription, can also be released extracellularly during acute inflammatory responses. Exposure of neutrophils, monocytes, or macrophages to HMGB1 results in increased nuclear translocation of NF-kappaB and enhanced expression of proinflammatory cytokines. Although the receptor for advanced glycation end products (RAGE) has been shown to interact with HMGB1, other putative HMGB1 receptors are known to exist but have not been characterized. In the present experiments, we explored the role of RAGE, Toll-like receptor (TLR) 2, and TLR 4, as well as associated kinases, in HMGB1-induced cellular activation. Culture of neutrophils or macrophages with HMGB1 produced activation of NF-kappaB through TLR 4-independent mechanisms. Unlike lipopolysaccharide (LPS), which primarily increased the activity of IKKbeta, HMGB1 exposure resulted in activation of both IKKalpha and IKKbeta. Kinases and scaffolding proteins downstream of TLR 2 and TLR 4, but not TLR/interleukin-1 receptor (IL-1R)-independent kinases such as tumor necrosis factor receptor-associated factor 2, were involved in the enhancement of NF-kappaB-dependent transcription by HMGB1. Transfections with dominant negative constructs demonstrated that TLR 2 and TLR 4 were both involved in HMGB1-induced activation of NF-kappaB. In contrast, RAGE played only a minor role in macrophage activation by HMGB1. Interactions of HMGB1 with TLR 2 and TLR 4 may provide an explanation for the ability of HMGB1 to generate inflammatory responses that are similar to those initiated by LPS.

          Related collections

          Author and article information

          Journal
          J Biol Chem
          The Journal of biological chemistry
          American Society for Biochemistry & Molecular Biology (ASBMB)
          0021-9258
          0021-9258
          Feb 27 2004
          : 279
          : 9
          Affiliations
          [1 ] Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
          Article
          S0021-9258(18)44430-4
          10.1074/jbc.M306793200
          14660645
          a281bbd4-091b-4ba8-b9eb-b8a6fef00a08
          History

          Comments

          Comment on this article