7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sialic Acid Linkage Analysis Refines the Diagnosis of Ovarian Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Epithelial ovarian cancer (EOC) is a rather rare but lethal disease that is usually diagnosed at an advanced stage; this is due to a lack of early diagnostic markers. At the time being, less than a quarter of patients are diagnosed when the tumor has not metastasized yet. In previous work, we demonstrated that antennarity, fucosylation, and sialylation increased in EOC patients and built a glycan-based score that was able to diagnose EOC better than CA125, the routine diagnostic marker, does. To date, little attention had been paid to the sialic acid linkages of N-glycans in the context of blood biomarker research. In this work, the sialic acid linkages of the serum glycome of ovarian cancer patients were investigated for the first time by MALDI-TOF-MS. To this end, we released N-glycans, derivatized sialic acids solely in a linkage-specific way and measured glycome profiles by MALDI-TOF mass spectrometry. A statistically significant decrease was observed between late stage patients and controls or early stage patients for high-mannose, hybrid-type, complex-type asialylated, bi, tri- and tetraantennary sialylated structures. A significant decrease of monosialylated monoantennary N-glycan structures was observed in early and late stage EOC when compared to healthy controls. Statistically significant increases were observed in early and late stage patients compared to controls for tri, tetraantennary fucosylated structures, afucosylated, and fucosylated triantennary structures taken as α-2,3-linked/α-2,6-linked sialic acid ratio. Moreover, all afucosylated and fucosylated structures taken as α-2,3-linked/α-2,6-linked sialic acid ratio and the α-2,3-linked/α-2,6-linked sialic acid ratio of all sialylated structures were increased significantly for early and late stage EOC patients when compared to healthy controls. Finally, ROC curves were built for the most significant glycan combinations and we were able to show that the serum glycome sialic acid ratio could enhance ovarian cancer diagnosis as sialic acid linkage modulations arise even in early stage ovarian cancer.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Epidemiology of ovarian cancer: a review

          Ovarian cancer (OC) is the seventh most commonly diagnosed cancer among women in the world and the tenth most common in China. Epithelial OC is the most predominant pathologic subtype, with five major histotypes that differ in origination, pathogenesis, molecular alterations, risk factors, and prognosis. Genetic susceptibility is manifested by rare inherited mutations with high to moderate penetrance. Genome-wide association studies have additionally identified 29 common susceptibility alleles for OC, including 14 subtype-specific alleles. Several reproductive and hormonal factors may lower risk, including parity, oral contraceptive use, and lactation, while others such as older age at menopause and hormone replacement therapy confer increased risks. These associations differ by histotype, especially for mucinous OC, likely reflecting differences in etiology. Endometrioid and clear cell OC share a similar, unique pattern of associations with increased risks among women with endometriosis and decreased risks associated with tubal ligation. OC risks associated with other gynecological conditions and procedures, such as hysterectomy, pelvic inflammatory disease, and polycystic ovarian syndrome, are less clear. Other possible risk factors include environmental and lifestyle factors such as asbestos and talc powder exposures, and cigarette smoking. The epidemiology provides clues on etiology, primary prevention, early detection, and possibly even therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Use of proteomic patterns in serum to identify ovarian cancer.

            New technologies for the detection of early-stage ovarian cancer are urgently needed. Pathological changes within an organ might be reflected in proteomic patterns in serum. We developed a bioinformatics tool and used it to identify proteomic patterns in serum that distinguish neoplastic from non-neoplastic disease within the ovary. Proteomic spectra were generated by mass spectroscopy (surface-enhanced laser desorption and ionisation). A preliminary "training" set of spectra derived from analysis of serum from 50 unaffected women and 50 patients with ovarian cancer were analysed by an iterative searching algorithm that identified a proteomic pattern that completely discriminated cancer from non-cancer. The discovered pattern was then used to classify an independent set of 116 masked serum samples: 50 from women with ovarian cancer, and 66 from unaffected women or those with non-malignant disorders. The algorithm identified a cluster pattern that, in the training set, completely segregated cancer from non-cancer. The discriminatory pattern correctly identified all 50 ovarian cancer cases in the masked set, including all 18 stage I cases. Of the 66 cases of non-malignant disease, 63 were recognised as not cancer. This result yielded a sensitivity of 100% (95% CI 93--100), specificity of 95% (87--99), and positive predictive value of 94% (84--99). These findings justify a prospective population-based assessment of proteomic pattern technology as a screening tool for all stages of ovarian cancer in high-risk and general populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sialic acids in cancer biology and immunity.

              During malignant transformation, glycosylation is heavily altered compared with healthy tissue due to differential expression of glycosyltransferases, glycosidases and monosaccharide transporters within the cancer microenvironment. One key change of malignant tissue glycosylation is the alteration of sialic acid processing that leads to a general upregulation of sialylated glycans (hypersialylation) on cell surfaces and an increased introduction of the non-human sialic acid N-glycolyl-neuraminic acid (Neu5Gc) instead of N-acetyl-neuraminic acid into cell surface glycans. These changes have been shown to be the result of altered sialyltransferase and sialidase expression. Functionally, cancer-associated hypersialylation appears to directly impact tumor cell interaction with the microenvironment, in particular the modulation of sialic acid-binding lectins on immune cells. Moreover, Neu5Gc expression in human tissues enhances inflammation due to an anti-Neu5Gc immune response, which can potentially influence inflammation-induced cancer and cancer-associated inflammation. In this review, we summarize the changes of sialic acid biology within the malignant microenvironment and the resulting effect on cancer immunity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                11 April 2019
                2019
                : 9
                : 261
                Affiliations
                [1] 1Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
                [2] 2Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin , Berlin, Germany
                [3] 3Department of Gynecology, European Competence Center for Ovarian Cancer, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin, Germany
                Author notes

                Edited by: Leonardo Freire-de-Lima, Federal University of Rio de Janeiro, Brazil

                Reviewed by: Francis Jacob, University Hospital of Basel, Switzerland; Ana Magalhães, i3S, Instituto de Investigação e Inovação em Saúde, Portugal

                *Correspondence: Véronique Blanchard veronique.blanchard@ 123456charite.de

                This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.00261
                6499200
                31110965
                a2d920a6-ba19-4481-8181-8af5618bfd25
                Copyright © 2019 Dědová, Braicu, Sehouli and Blanchard.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 February 2019
                : 22 March 2019
                Page count
                Figures: 4, Tables: 2, Equations: 0, References: 34, Pages: 11, Words: 7041
                Categories
                Oncology
                Original Research

                Oncology & Radiotherapy
                n-glycans,sialic acids,2–3 sialic acids,sialic acid linkage,ovarian cancer,biomarker,maldi-tof

                Comments

                Comment on this article