9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      USP1-regulated reciprocal differentiation of Th17 cells and Treg cells by deubiquitinating and stabilizing TAZ

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          CD4+ T cell help in cancer immunology and immunotherapy

          Cancer immunotherapy aims to promote the activity of cytotoxic T lymphocytes (CTLs) within a tumour, assist the priming of tumour-specific CTLs in lymphoid organs and establish efficient and durable antitumour immunity. During priming, help signals are relayed from CD4+ T cells to CD8+ T cells by specific dendritic cells to optimize the magnitude and quality of the CTL response. In this Review, we highlight the cellular dynamics and membrane receptors that mediate CD4+ T cell help and the molecular mechanisms of the enhanced antitumour activity of CTLs. We outline how deficient CD4+ T cell help reduces the response of CTLs and how maximizing CD4+ T cell help can improve outcomes in cancer immunotherapy strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            YAP/TAZ at the Roots of Cancer.

            YAP and TAZ are highly related transcriptional regulators pervasively activated in human malignancies. Recent work indicates that, remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, chemoresistance, and metastasis. YAP/TAZ are sensors of the structural and mechanical features of the cell microenvironment. A number of cancer-associated extrinsic and intrinsic cues conspire to overrule the YAP-inhibiting microenvironment of normal tissues, including changes in mechanotransduction, inflammation, oncogenic signaling, and regulation of the Hippo pathway. Addiction to YAP/TAZ thus potentially represents a central cancer vulnerability that may be exploited therapeutically.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Balance of Th17 versus Treg Cells in Autoimmunity

              T helper type 17 (Th17) cells and pTreg cells, which share a common precursor cell (the naïve CD4 T cell), require a common tumor growth factor (TGF)-β signal for initial differentiation. However, terminally differentiated cells fulfill opposite functions: Th17 cells cause autoimmunity and inflammation, whereas Treg cells inhibit these phenomena and maintain immune homeostasis. Thus, unraveling the mechanisms that affect the Th17/Treg cell balance is critical if we are to better understand autoimmunity and tolerance. Recent studies have identified many factors that influence this balance; these factors range from signaling pathways triggered by T cell receptors, costimulatory receptors, and cytokines, to various metabolic pathways and the intestinal microbiota. This review article summarizes recent advances in our understanding of the Th17/Treg balance and its implications with respect to autoimmune disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Cellular & Molecular Immunology
                Cell Mol Immunol
                Springer Science and Business Media LLC
                2042-0226
                January 05 2023
                Article
                10.1038/s41423-022-00969-9
                36600049
                a37253f7-d091-4562-bf62-97ded6b95266
                © 2023

                https://www.springernature.com/gp/researchers/text-and-data-mining

                https://www.springernature.com/gp/researchers/text-and-data-mining

                History

                Comments

                Comment on this article