25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Driving Hierarchical Collagen Fiber Formation for Functional Tendon, Ligament, and Meniscus Replacement

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hierarchical collagen fibers are the primary source of strength in musculoskeletal tendons, ligaments, and menisci. It has remained a challenge to develop these large fibers in engineered replacements or in vivo after injury. The objective of this study was to investigate the ability of restrained cell-seeded high density collagen gels to drive hierarchical fiber formation for multiple musculoskeletal tissues. We found boundary conditions applied to high density collagen gels were capable of driving tenocytes, ligament fibroblasts, and meniscal fibrochondrocytes to develop native-sized hierarchical collagen fibers 20–40 μm in diameter. The fibers organize similar to bovine juvenile collagen with native fibril banding patterns and hierarchical fiber bundles 50–350 μm in diameter by 6 weeks. Mirroring fiber organization, tensile properties of restrained samples improved significantly with time, reaching ~1 MPa. Additionally, tendon, ligament, and meniscal cells produced significantly different sized fibers, different degrees of crimp, and different GAG concentrations, which corresponded with respective juvenile tissue. To our knowledge, these are some of the largest, most organized fibers produced to date in vitro. Further, cells produced tissue specific hierarchical fibers, suggesting this system is a promising tool to better understand cellular regulation of fiber formation to better stimulate it in vivo after injury.

          Graphical abstract

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Nature designs tough collagen: explaining the nanostructure of collagen fibrils.

          Collagen is a protein material with superior mechanical properties. It consists of collagen fibrils composed of a staggered array of ultra-long tropocollagen (TC) molecules. Theoretical and molecular modeling suggests that this natural design of collagen fibrils maximizes the strength and provides large energy dissipation during deformation, thus creating a tough and robust material. We find that the mechanics of collagen fibrils can be understood quantitatively in terms of two critical molecular length scales chi(S) and chi(R) that characterize when (i) deformation changes from homogeneous intermolecular shear to propagation of slip pulses and when (ii) covalent bonds within TC molecules begin to fracture, leading to brittle-like failure. The ratio chi(S)/chi(R) indicates which mechanism dominates deformation. Our modeling rigorously links the chemical properties of individual TC molecules to the macroscopic mechanical response of fibrils. The results help to explain why collagen fibers found in nature consist of TC molecules with lengths in the proximity of 300 nm and advance the understanding how collagen diseases that change intermolecular adhesion properties influence mechanical properties.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up.

            Collagen constitutes one-third of the human proteome, providing mechanical stability, elasticity, and strength to organisms and is the prime construction material in biology. Collagen is also the dominating material in the extracellular matrix and its stiffness controls cell differentiation, growth, and pathology. However, the origin of the unique mechanical properties of collagenous tissues, and in particular its stiffness, extensibility, and nonlinear mechanical response at large deformation, remains unknown. By using X-ray diffraction data of a collagen fibril (Orgel, J. P. R. O. et al. Proc. Natl. Acad. Sci. 2006, 103, 9001) here we present an experimentally validated model of the nanomechanics of a collagen microfibril that incorporates the full biochemical details of the amino acid sequence of constituting molecules and the nanoscale molecular arrangement. We demonstrate by direct mechanical testing that hydrated (wet) collagen microfibrils feature a Young's modulus of ≈300 MPa at small, and ≈1.2 GPa at larger deformation in excess of 10% strain, which is in excellent agreement with experimental data. We find that dehydrated (dry) collagen microfibrils show a significantly increased Young's modulus of ≈1.8-2.25 GPa, which is in agreement with experimental measurements and owing to tighter molecular packing. Our results show that the unique mechanical properties of collagen microfibrils arise due to their hierarchical structure at the nanoscale, where key deformation mechanisms are straightening of twisted triple-helical molecules at small strains, followed by axial stretching and eventual molecular uncoiling. The establishment of a model of hierarchical deformation mechanisms explains the striking difference of the elastic modulus of collagen fibrils compared with single molecules, which is found in the range of 4.8 ± 2 GPa, or ≈10-20 times greater. We find that collagen molecules alone are not capable of providing the broad range of mechanical functionality required for physiological function of collagenous tissues. Rather, the existence of an array of deformation mechanisms, derived from the hierarchical makeup of the material, is critical to the material's ability to confer key mechanical properties, specifically large extensibility, strain hardening, and toughness, despite the limitation that collagenous materials are constructed from only few distinct amino acids. The atomistic model of collagen microfibril mechanics now enables the bottom-up elucidation of structure-property relationships in a broader class of collagen materials (e.g., tendon, bone, cornea), including studies of genetic disease where the incorporation of biochemical details is essential. The availability of a molecular-based model of collagen tissues may eventually result in novel nanomedicine approaches to develop treatments for a broad class of collagen diseases and the design of de novo biomaterials for regenerative medicine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The regulatory roles of small leucine-rich proteoglycans in extracellular matrix assembly.

              Small leucine-rich proteoglycans (SLRPs) are involved in a variety of biological and pathological processes. This review focuses on their regulatory roles in matrix assembly. SLRPs have protein cores and hypervariable glycosylation with multivalent binding abilities. During development, differential interactions of SLRPs with other molecules result in tissue-specific spatial and temporal distributions. The changing expression patterns play a critical role in the regulation of tissue-specific matrix assembly and therefore tissue function. SLRPs play significant structural roles within extracellular matrices. In addition, they play regulatory roles in collagen fibril growth, fibril organization and extracellular matrix assembly. Moreover, they are involved in mediating cell-matrix interactions. Abnormal SLRP expression and/or structures result in dysfunctional extracellular matrices and pathophysiology. Altered expression of SLRPs has been found in many disease models, and structural deficiency also causes altered matrix assembly. SLRPs regulate assembly of the extracellular matrix, which defines the microenvironment, modulating both the extracellular matrix and cellular functions, with an impact on tissue function. © 2013 The Authors Journal compilation © 2013 FEBS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomaterials
                Biomaterials
                Biomaterials
                Elsevier Science
                0142-9612
                1878-5905
                1 February 2021
                February 2021
                : 269
                : 120527
                Affiliations
                [a ]Department of Materials, Department of Bioengineering, And Institute for Biomedical Engineering, Imperial College London, London, United Kingdom, SW7 2AZ
                [b ]Department of Biomedical Engineering and Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, United States, 23284
                Author notes
                []Corresponding author. Address: Department of Materials, Imperial College London, South Kensington Campus, Prince Consort Road, London SW7 2AZ, United Kingdom m.stevens@ 123456imperial.ac.uk
                Article
                S0142-9612(20)30773-0 120527
                10.1016/j.biomaterials.2020.120527
                7883218
                33246739
                a3c97e64-a2b5-4223-aaf2-2477c841b510
                © 2020 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 3 August 2020
                : 9 October 2020
                : 3 November 2020
                Categories
                Article

                Biomaterials & Organic materials
                collagen,tendon,ligament,meniscus,hierarchical,fibrillogenesis
                Biomaterials & Organic materials
                collagen, tendon, ligament, meniscus, hierarchical, fibrillogenesis

                Comments

                Comment on this article