5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of cardiac drugs on human erythrocyte carbonic anhydrase I and II isozymes

      research-article
      a , b , b , b
      Journal of Enzyme Inhibition and Medicinal Chemistry
      Taylor & Francis
      Cardiac drugs, carbonic anhydrase, enzyme inhibition

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cardiovascular diseases are the leading cause of mortality worldwide. In recent years, the relationship between carbonic anhydrase inhibitors and atherosclerosis has attracted attention. In this study, we aimed to determine the in vitro effects of 35 frequently used cardiac drugs on human carbonic anhydrase I (hCA I) and II (hCA II). The inhibitory effects of the drugs on hCA I and hCA II were determined with both the hydratase and esterase methods. The most potent inhibitors observed were propafenone (hCA I: 2.8 µM and hCA II: 3.02 µM) and captopril (hCA I: 1.58 µM and hCA II: 6.25 µM). Isosorbide mononitrate, propranolol, furosemide, and atorvastatin were also potent inhibitors. The inhibitor constant, K i, value from the Lineweaver–Burk plot for propafenone was 2.38 µM for hCA I and 2.97 µM for hCA II. The tested cardiac drugs showed potent in vitro inhibition of the hCA I and II isozymes. Especially, in patients with atherosclerotic heart disease, these drugs may be preferred primarily due to the beneficial effects of carbonic anhydrase inhibition on atherosclerosis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Determination of Enzyme Dissociation Constants

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early intensive vs a delayed conservative simvastatin strategy in patients with acute coronary syndromes: phase Z of the A to Z trial.

              Limited data are available evaluating how the timing and intensity of statin therapy following an acute coronary syndrome (ACS) event affect clinical outcome. To compare early initiation of an intensive statin regimen with delayed initiation of a less intensive regimen in patients with ACS. International, randomized, double-blind trial of patients with ACS receiving 40 mg/d of simvastatin for 1 month followed by 80 mg/d thereafter (n = 2265) compared with ACS patients receiving placebo for 4 months followed by 20 mg/d of simvastatin (n = 2232), who were enrolled in phase Z of the A to Z trial between December 29, 1999, and January 6, 2003. The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, readmission for ACS, and stroke. Follow-up was for at least 6 months and up to 24 months. Among the patients in the placebo plus simvastatin group, the median low-density lipoprotein (LDL) cholesterol level achieved while taking placebo was 122 mg/dL (3.16 mmol/L) at 1 month and was 77 mg/dL (1.99 mmol/L) at 8 months while taking 20 mg/d of simvastatin. Among the patients in the simvastatin only group, the median LDL cholesterol level achieved at 1 month while taking 40 mg/d of simvastatin was 68 mg/dL (1.76 mmol/L) and was 63 mg/dL (1.63 mmol/L) at 8 months while taking 80 mg/d of simvastatin. A total of 343 patients (16.7%) in the placebo plus simvastatin group experienced the primary end point compared with 309 (14.4%) in the simvastatin only group (40 mg/80 mg) (hazard ratio [HR], 0.89; 95% confidence interval [CI] 0.76-1.04; P =.14). Cardiovascular death occurred in 109 (5.4%) and 83 (4.1%) patients in the 2 groups (HR, 0.75; 95% CI, 0.57-1.00; P =.05) but no differences were observed in other individual components of the primary end point. No difference was evident during the first 4 months between the groups for the primary end point (HR, 1.01; 95% CI, 0.83-1.25; P =.89), but from 4 months through the end of the study the primary end point was significantly reduced in the simvastatin only group (HR, 0.75; 95% CI, 0.60-0.95; P =.02). Myopathy (creatine kinase >10 times the upper limit of normal associated with muscle symptoms) occurred in 9 patients (0.4%) receiving simvastatin 80 mg/d, in no patients receiving lower doses of simvastatin, and in 1 patient receiving placebo (P =.02). The trial did not achieve the prespecified end point. However, among patients with ACS, the early initiation of an aggressive simvastatin regimen resulted in a favorable trend toward reduction of major cardiovascular events.
                Bookmark

                Author and article information

                Journal
                J Enzyme Inhib Med Chem
                J Enzyme Inhib Med Chem
                Journal of Enzyme Inhibition and Medicinal Chemistry
                Taylor & Francis
                1475-6366
                1475-6374
                22 June 2020
                2020
                : 35
                : 1
                : 1359-1362
                Affiliations
                [a ]Department of Cardiology, Faculty of Medicine, Balikesir University , Balikesir, Turkey
                [b ]Department of Chemistry, Science and Art Faculty, Balikesir University , Balikesir, Turkey
                Author notes
                CONTACT Nahit Gencer ngencer@ 123456balikesir.edu.tr Department of Chemistry, Science and Art Faculty, Balikesir University , Balikesir, Turkey
                Author information
                https://orcid.org/0000-0001-7745-7736
                https://orcid.org/0000-0003-2276-1516
                https://orcid.org/0000-0003-1185-7336
                https://orcid.org/0000-0001-7092-8857
                Article
                1781844
                10.1080/14756366.2020.1781844
                7717712
                32567385
                a467105f-f322-42cb-8de9-beda7ac86a21
                © 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 0, Tables: 2, Pages: 4, Words: 3606
                Categories
                Research Article
                Research Paper

                Pharmaceutical chemistry
                cardiac drugs,carbonic anhydrase,enzyme inhibition
                Pharmaceutical chemistry
                cardiac drugs, carbonic anhydrase, enzyme inhibition

                Comments

                Comment on this article