Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunosenescence and lymphomagenesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          One of the most important determinants of aging-related changes is a complex biological process emerged recently and called “immunosenescence”. Immunosenescence refers to the inability of an aging immune system to produce an appropriate and effective response to challenge. This immune dysregulation may manifest as increased susceptibility to infection, cancer, autoimmune disease, and vaccine failure. At present, the relationship between immunosenescence and lymphoma in elderly patients is not defined in a satisfactory way.

          This review presents a brief overview of the interplay between aging, cancer and lymphoma, and the key topic of immunosenescence is addressed in the context of two main lymphoma groups, namely Non Hodgkin Lymphoma (NHL) and Hodgkin Lymphoma (HL). Epstein Barr Virus (EBV) plays a central role in the onset of neoplastic lymphoproliferation associated with immunological changes in aging, although the pathophysiology varies vastly among different disease entities. The interaction between immune dysfunction, immunosenescence and Epstein Barr Virus (EBV) infection appears to differ between NHL and HL, as well as between NHL subtypes.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The Effect of Age on Thymic Function

          Age-related regression of the thymus is associated with a decline in naïve T cell output. This is thought to contribute to the reduction in T cell diversity seen in older individuals and linked with increased susceptibility to infection, autoimmune disease, and cancer. Thymic involution is one of the most dramatic and ubiquitous changes seen in the aging immune system, but the mechanisms which underlying this process are poorly understood. However, a picture is emerging, implicating the involvement of both extrinsic and intrinsic factors. In this review we assess the role of the thymic microenvironment as a potential target that regulates thymic involution, question whether thymocyte development in the aged thymus is functionally impaired, and explore the kinetics of thymic involution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The immune system and aging: a review.

            Abstract The concept of immunosenescence reflects age-related changes in immune responses, both cellular and serological, affecting the process of generating specific responses to foreign and self-antigens. The decline of the immune system with age is reflected in the increased susceptibility to infectious diseases, poorer response to vaccination, increased prevalence of cancer, autoimmune and other chronic diseases. Both innate and adaptive immune responses are affected by the aging process; however, the adaptive response seems to be more affected by the age-related changes in the immune system. Additionally, aged individuals tend to present a chronic low-grade inflammatory state that has been implicated in the pathogenesis of many age-related diseases (atherosclerosis, Alzheimer's disease, osteoporosis and diabetes). However, some individuals arrive to advanced ages without any major health problems, referred to as healthy aging. The immune system dysfunction seems to be somehow mitigated in this population, probably due to genetic and environmental factors yet to be described. In this review, an attempt is made to summarize the current knowledge on how the immune system is affected by the aging process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diffuse large B-cell lymphoma.

              Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults accounting for 31% of all NHL in Western Countries. Following, morphological, biological and clinical studies have allowed the subdivision of DLBCLs into morphological variants, molecular and immunophenotypic subgroups and distinct disease entities. However, a large number of cases still remain biologically and clinically heterogeneous, for which there are no clear and accepted criteria for subclassification; these are collectively termed DLBCL, not otherwise specified (NOS). DLBCL-NOS occurs in adult patients, with a median age in the seventh decade, but the age range is broad, and it may also occur in children. Clinical presentation, behaviour and prognosis are variable, depending mainly of the extranodal site when they arise. These malignancies present in localized manner in approximately 20% of patients. Disseminated extranodal disease is less frequent, and one third of patients have systemic symptoms. Overall, DLBCLs are aggressive but potentially curable malignancies. Cure rate is particularly high in patients with limited disease with a 5-year PFS ranging from 80% to 85%; patients with advanced disease have a 5-year PFS ≈ 50%. The International Prognostic Index (IPI) and age adjusted IPI (aaIPI) are the benchmarks of DLBCL prognosis. First-line treatment for patients with DLBCL is based on the individual IPI score and age, and three major subgroups should be considered: elderly patients (>60 years, aaIPI=0-3); young patients with low risk (<60 years, aaIPI=0-1); young patients with high risk (<60 years, aaIPI=2-3). The combination of the anti-CD20 monoclonal antibody rituximab and CHOP chemotherapy, every 14 or 21 days, is the standard treatment for DLBCL patients. Recent randomized trials suggest that high-dose chemotherapy supported by autologous stem cell transplant (HDC/ASCT) should not be used as upfront treatment for young high-risk patients outside prospective clinical trials. HDC/ASCT is actually recommended in young patients who did not achieve CR after first-line chemotherapy. Consolidation radiotherapy should be reserved to patients with bulky disease who did not achieve CR after immunochemotherapy. Patients with high IPI score, which indicates increased LDH serum level and the involvement of more than one extranodal site, and patients with involvement of certain extranodal sites (a.e., testes and orbit) should receive CNS prophylaxis as part of first-line treatment. HDC/ASCT should be considered the standard therapy for DLBCL patients with chemotherapy-sensitive relapse. Overall results in patients who cannot be managed with HDC/ASCT due to age or comorbidity are disappointing. New effective and less toxic chemotherapy drugs or biological agents are also worth considering for this specific and broad group of patients. Several novel agents are undergoing evaluation in DLBCL; among other, immunomodulating agents (lenalidomide), m-TOR inhibitors (temsirolimus and everolimus), proteasome inhibitors (bortezomib), histone deacetylase inhibitors (vorinostat), and anti-angiogenetic agents (bevacizumab) are being investigated in prospective trials. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                +39 0916554570 , salvatrice.mancuso@unipa.it
                melania.carlisi@unipa.it
                marco.santoro03@community.pa.it
                mariasanta.napolitano@unipa.it
                raso.simona@libero.it
                sergio.siragusa@unipa.it
                Journal
                Immun Ageing
                Immun Ageing
                Immunity & Ageing : I & A
                BioMed Central (London )
                1742-4933
                21 September 2018
                21 September 2018
                2018
                : 15
                : 22
                Affiliations
                [1 ]ISNI 0000 0004 1762 5517, GRID grid.10776.37, Haematology, Biomedical Department of Internal Medicine and Medical Specialties, , University of Palermo, ; Palermo, Italy
                [2 ]ISNI 0000 0004 1762 5517, GRID grid.10776.37, Department of Surgical, Oncological and Stomatological Disciplines, , University of Palermo, ; Palermo, Italy
                Article
                130
                10.1186/s12979-018-0130-y
                6151062
                30258468
                a53905b9-2faf-4fc8-bb9a-931ede648c74
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 May 2018
                : 7 September 2018
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Immunology
                lymphoma,lymphomagenesis,immunosenescence,ageing,cancer
                Immunology
                lymphoma, lymphomagenesis, immunosenescence, ageing, cancer

                Comments

                Comment on this article