3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of ADAM10 and ADAM17 in Regulating CD137 Function

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human CD137 (4-1BB), a member of the TNF receptor family, and its ligand CD137L (4-1BBL), are expressed on immune cells and tumor cells. CD137/CD137L interaction mediates bidirectional cellular responses of potential relevance in inflammatory diseases, autoimmunity and oncology. A soluble form of CD137 exists, elevated levels of which have been reported in patients with rheumatoid arthritis and various malignancies. Soluble CD137 (sCD137) is considered to represent a splice variant of CD137. In this report, however, evidence is presented that A Disintegrin and Metalloproteinase (ADAM)10 and potentially also ADAM17 are centrally involved in its generation. Release of sCD137 by transfected cell lines and primary T cells was uniformly inhibitable by ADAM10 inhibition. The shedding function of ADAM10 can be blocked through inhibition of its interaction with surface exposed phosphatidylserine (PS), and this effectively inhibited sCD137 generation. The phospholipid scramblase Anoctamin-6 (ANO6) traffics PS to the outer membrane and thus modifies ADAM10 function. Overexpression of ANO6 increased stimulated shedding, and hyperactive ANO6 led to maximal constitutive shedding of CD137. sCD137 was functionally active and augmented T cell proliferation. Our findings shed new light on the regulation of CD137/CD137L immune responses with potential impact on immunotherapeutic approaches targeting CD137.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: not found

          Membrane phosphatidylserine regulates surface charge and protein localization.

          Electrostatic interactions with negatively charged membranes contribute to the subcellular targeting of proteins with polybasic clusters or cationic domains. Although the anionic phospholipid phosphatidylserine is comparatively abundant, its contribution to the surface charge of individual cellular membranes is unknown, partly because of the lack of reagents to analyze its distribution in intact cells. We developed a biosensor to study the subcellular distribution of phosphatidylserine and found that it binds the cytosolic leaflets of the plasma membrane, as well as endosomes and lysosomes. The negative charge associated with the presence of phosphatidylserine directed proteins with moderately positive charge to the endocytic pathway. More strongly cationic proteins, normally associated with the plasma membrane, relocalized to endocytic compartments when the plasma membrane surface charge decreased on calcium influx.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion.

            The CX3C chemokine fractalkine (CX3CL1) exists as a membrane-expressed protein promoting cell-cell adhesion and as a soluble molecule inducing chemotaxis. Transmembrane CX3CL1 is converted into its soluble form by defined proteolytic cleavage (shedding), which can be enhanced by stimulation with phorbol-12-myristate-13-acetate (PMA). PMA-induced CX3CL1 shedding has been shown to involve the tumor necrosis factor-alpha-converting enzyme (TACE), whereas the constitutive cleavage in unstimulated cells remains elusive. Here we demonstrate a role of the closely related disintegrin-like metalloproteinase 10 (ADAM10) in the constitutive CX3CL1 cleavage. The hydroxamate GW280264X, capable of blocking TACE as well as ADAM10, proved to be an effective inhibitor of the constitutive and the PMA-inducible CX3CL1 cleavage in CX3CL1-expressing ECV-304 cells (CX3CL1-ECV-304), whereas GI254023X, preferentially blocking ADAM10 but not TACE, reduced the constitutive cleavage only. Overexpression of ADAM10 in COS-7 cells enhanced constitutive cleavage of CX3CL1 and, more importantly, in murine fibroblasts deficient of ADAM10 constitutive CX3CL1 cleavage was markedly reduced. Thus, ADAM10 contributes to the constitutive shedding of CX3CL1 in unstimulated cells. Addressing the functional role of CX3CL1 shedding for the adhesion of monocytic cells via membrane-expressed CX3CL1, we found that THP-1 cells adhere to CX3CL1-ECV-304 cells but detach in the course of vigorous washing. Inhibition of ADAM10-mediated CX3CL1 shedding not only increased adhesive properties of CX3CL1-ECV-304 cells but also prevented de-adhesion of bound THP-1 cells. Our data demonstrate that ADAM10 is involved in the constitutive cleavage of CX3CL1 and thereby may regulate the recruitment of monocytic cells to CX3CL1-expressing cell layers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies

              4-1BB (CD137, tumor necrosis factor receptor superfamily 9) is an inducible costimulatory receptor expressed on activated T and natural killer (NK) cells. 4-1BB ligation on T cells triggers a signaling cascade that results in upregulation of antiapoptotic molecules, cytokine secretion, and enhanced effector function. In dysfunctional T cells that have a decreased cytotoxic capacity, 4-1BB ligation demonstrates a potent ability to restore effector functions. On NK cells, 4-1BB signaling can increase antibody-dependent cell-mediated cytotoxicity. Agonistic monoclonal antibodies targeting 4-1BB have been developed to harness 4-1BB signaling for cancer immunotherapy. Preclinical results in a variety of induced and spontaneous tumor models suggest that targeting 4-1BB with agonist antibodies can lead to tumor clearance and durable antitumor immunity. Clinical trials of 2 agonist antibodies, urelumab and utomilumab, are ongoing. Despite initial signs of efficacy, clinical development of urelumab has been hampered by inflammatory liver toxicity at doses >1 mg/kg. Utomilumab has a superior safety profile, but is a less potent 4-1BB agonist relative to urelumab. Both antibodies have demonstrated promising results in patients with lymphoma and are being tested in combination therapy trials with other immunomodulatory agents. In an effort to optimally leverage 4-1BB-mediated immune activation, the next generation of 4-1BB targeting strategies attempts to decouple the observed antitumor efficacy from the on-target liver toxicity. Multiple therapeutics that attempt to restrict 4-1BB agonism to the tumor microenvironment and minimize systemic exposure have emerged. 4-1BB is a compelling target for cancer immunotherapy and future agents show great promise for achieving potent immune activation while avoiding limiting immune-related adverse events.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                08 March 2021
                March 2021
                : 22
                : 5
                : 2730
                Affiliations
                [1 ]Department of Dermatology, University of Kiel, 24105 Kiel, Germany; jseidel@ 123456dermatology.uni-kiel.de (J.S.); sleitzke@ 123456dermatology.uni-kiel.de (S.L.); bahrens@ 123456dermatology.uni-kiel.de (B.A.); msperrhacke@ 123456dermatology.uni-kiel.de (M.S.)
                [2 ]Independent Researcher, 24105 Kiel, Germany; sbhakdi@ 123456uni-mainz.de
                Author notes
                Author information
                https://orcid.org/0000-0001-5140-2235
                Article
                ijms-22-02730
                10.3390/ijms22052730
                7962946
                a57b1287-e225-4be1-91c6-5a7893027dc2
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 January 2021
                : 05 March 2021
                Categories
                Article

                Molecular biology
                cd137,adam10,adam17,anoctamin-6,t cell proliferation,cancer
                Molecular biology
                cd137, adam10, adam17, anoctamin-6, t cell proliferation, cancer

                Comments

                Comment on this article