Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Manifesting carriers of X-linked myotubular myopathy : Genetic modifiers modulating the phenotype

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To analyze the modulation of the phenotype in manifesting carriers of recessive X-linked myotubular myopathy (XLMTM), searching for possible genetic modifiers.

          Methods

          Twelve Brazilian families with XLMTM were molecularly and clinically evaluated. In 2 families, 4 of 6 and 2 of 5 manifesting female carriers were identified. These females were studied for X chromosome inactivation. In addition, whole-exome sequencing was performed, looking for possible modifier variants. We also determined the penetrance rate among carriers of the mutations responsible for the condition.

          Results

          Mutations in the MTM1 gene were identified in all index patients from the 12 families, being 4 of them novel. In the heterozygotes, X chromosome inactivation was random in 3 of 4 informative manifesting carriers. The disease penetrance rate was estimated to be 30%, compatible with incomplete penetrance. Exome comparative analyses identified variants within a segment of 4.2 Mb on chromosome 19, containing the killer cell immunoglobulin-like receptor cluster of genes that were present in all nonmanifesting carriers and absent in all manifesting carriers. We hypothesized that these killer cell immunoglobulin-like receptor variants may modulate the phenotype, acting as a protective factor in the nonmanifesting carriers.

          Conclusions

          Affected XLMTM female carriers have been described with a surprisingly high frequency for a recessive X-linked disease, raising the question about the pattern of inheritance or the role of modifier factors acting on the disease phenotype. We demonstrated the possible existence of genetic mechanisms and variants accountable for the clinical manifestation in these women, which can become future targets for therapies.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS.

          Natural killer (NK) cells provide defense in the early stages of the innate immune response against viral infections by producing cytokines and causing cytotoxicity. The killer immunoglobulin-like receptors (KIRs) on NK cells regulate the inhibition and activation of NK-cell responses through recognition of human leukocyte antigen (HLA) class I molecules on target cells KIR and HLA loci are both highly polymorphic, and some HLA class I products bind and trigger cell-surface receptors specified by KIR genes. Here we report that the activating KIR allele KIR3DS1, in combination with HLA-B alleles that encode molecules with isoleucine at position 80 (HLA-B Bw4-80Ile), is associated with delayed progression to AIDS in individuals infected with human immunodeficiency virus type 1 (HIV-1). In the absence of KIR3DS1, the HLA-B Bw4-80Ile allele was not associated with any of the AIDS outcomes measured. By contrast, in the absence of HLA-B Bw4-80Ile alleles, KIR3DS1 was significantly associated with more rapid progression to AIDS. These observations are strongly suggestive of a model involving an epistatic interaction between the two loci. The strongest synergistic effect of these loci was on progression to depletion of CD4(+) T cells, which suggests that a protective response of NK cells involving KIR3DS1 and its HLA class I ligands begins soon after HIV-1 infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation.

            The human androgen-receptor gene (HUMARA; GenBank) contains a highly polymorphic trinucleotide repeat in the first exon. We have found that the methylation of HpaII and HhaI sites less than 100 bp away from this polymorphic short tandem repeat (STR) correlates with X inactivation. The close proximity of the restriction-enzyme sites to the STR allows the development of a PCR assay that distinguishes between the maternal and paternal alleles and identifies their methylation status. The accuracy of this assay was tested on (a) DNA from hamster/human hybrid cell lines containing either an active or inactive human X chromosome; (b) DNA from normal males and females; and (c) DNA from females showing nonrandom patterns of X inactivation. Data obtained using this assay correlated substantially with those obtained using the PGK, HPRT, and M27 beta probes, which detect X inactivation patterns by Southern blot analysis. In order to demonstrate one application of this assay, we examined X inactivation patterns in the B lymphocytes of potential and obligate carriers of X-linked agammaglobulinemia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The killer cell immunoglobulin-like receptor (KIR) genomic region: gene-order, haplotypes and allelic polymorphism.

              Recent genetic studies have established that the killer cell immunoglobulin-like receptor (KIR) genomic region displays extensive diversity through variation in gene content and allelic polymorphism within individual KIR genes. It is demonstrated by family segregation analysis, genomic sequencing, and gene order determination that genomic diversity by gene content alone gives rise to more than 20 different KIR haplotypes and at least 40-50 KIR genotypes. In the most reductionist format, KIR haplotypes can be accommodated within one of 10 different prototypes, each with multiple permutations. Our haplotype model considers the KIR haplotype as two separate halves: the centromeric half bordered upstream by KIR3DL3 and downstream by 2DL4, and the telomeric half bordered upstream by 2DL4 and downstream by 3DL2. There are rare KIR haplotypes that do not fit into this model. Recombination, gene duplication, and inversion can however, readily explain these haplotypes. Additional allelic polymorphism imposes extensive individual variability. Accordingly, this segment of the human genome displays a level of diversity similar to the one observed for the human major histocompatibility complex. Recent application of immunogenetic analysis of KIR genes in patient populations implicates these genes as important genetic disease susceptibility factors.
                Bookmark

                Author and article information

                Journal
                Neurol Genet
                nng
                NNG
                Neurology: Genetics
                Wolters Kluwer (Baltimore )
                2376-7839
                October 2020
                4 September 2020
                4 September 2020
                : 6
                : 5
                : e513
                Affiliations
                From the Human Genome and Stem Cell Research Center (L.S.S., C.F.A., G.L.Y., R.d.C.M.P., S.S.d.C., I.P.A., S.A.d.C., J.Y.T.W., M.d.O.S., P.A.O., M.V.), University of São Paulo; Department of Pediatrics (J.G.-G.), Medical School of Federal University of Minas Gerais, Belo Horizonte; Pathology Department (E.C.C.), School of Medicine, São Paulo State University (UNESP), Botucatu; and Department of Neurology (E.Z.), Medical School (FMUSP), University of São Paulo, Brazil.
                Author notes
                Correspondence Dr. Vainzof mvainzof@ 123456usp.br

                Go to Neurology.org/NG for full disclosures. Funding information is provided at the end of the article.

                The Article Processing Charge was funded by the authors.

                Article
                NG2020013391
                10.1212/NXG.0000000000000513
                7524580
                33062893
                a64051c5-1eeb-412f-aa25-2afefb67c3ae
                Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                History
                : 21 February 2020
                : 16 July 2020
                Categories
                176
                185
                Article
                Custom metadata
                TRUE

                Comments

                Comment on this article