0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of subchronic exposure of perfluorooctane sulfonate on cognitive function of mice and its mechanism

      , , , ,
      Environmental Pollution
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Perfluorooctane sulfonate (PFOS) is an emerging persistent organic pollutant, and its potential impact on cognitive function remains unclear. We adopted the C57BL/6J mouse model to investigate the effect of PFOS on cognitive function, as well as the underlying mechanisms. Subchronic exposure was performed by administering PFOS via drinking water for 6 months (at doses of 0, 0.2, and 2.0 mg/kg/day), starting from 10.5 months old. The object recognition ability was tested at 2, 4, and 6 months of exposure, and spatial learning and memory were assessed at endpoint. The apoptosis of neurons and astrocytes in the cortex and hippocampus was analyzed, as well as the potential apoptotic signaling pathways. Our results showed that exposure to PFOS for 6 months caused a decrease in object recognition ability and a decline in learning and spatial memory. PFOS selectively increased apoptosis in neurons of the cerebral cortex and specifically activated the endoplasmic reticulum stress PERK/CHOP signaling pathway. In conclusion, our results confirmed that subchronic exposure to PFOS can lead to cognitive impairment in mice, which might be closely associated with the specific activation of an endoplasmic reticulum stress-induced pro-apoptosis pathway in the cerebral cortex neurons.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Astrocyte-endothelial interactions and blood-brain barrier permeability.

          N. Abbott (2002)
          The blood-brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFbeta, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain endothelial permeability has been shown for a number of small chemical mediators produced by astrocytes and other nearby cell types. It is clear that endothelial cells are involved in both long- and short-term chemical communication with neighbouring cells, with the perivascular end feet of astrocytes being of particular importance. The role of barrier induction and modulation in normal physiology and in pathology is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accumulation of perfluoroalkyl substances in human tissues.

            Perfluoroalkyl substances (PFASs) are environmental pollutants with an important bioaccumulation potential. However, their metabolism and distribution in humans are not well studied. In this study, the concentrations of 21 PFASs were analyzed in 99 samples of autopsy tissues (brain, liver, lung, bone, and kidney) from subjects who had been living in Tarragona (Catalonia, Spain). The samples were analyzed by solvent extraction and online purification by turbulent flow and liquid chromatography coupled to tandem mass spectrometry. The occurrence of PFASs was confirmed in all human tissues. Although PFASs accumulation followed particular trends depending on the specific tissue, some similarities were found. In kidney and lung, perfluorobutanoic acid was the most frequent compound, and at highest concentrations (median values: 263 and 807ng/g in kidney and lung, respectively). In liver and brain, perfluorohexanoic acid showed the maximum levels (median: 68.3 and 141ng/g, respectively), while perfluorooctanoic acid was the most contributively in bone (median: 20.9ng/g). Lung tissues accumulated the highest concentration of PFASs. However, perfluorooctane sulfonic acid and perfluorooctanoic acid were more prevalent in liver and bone, respectively. To the best of our knowledge, the accumulation of different PFASs in samples of various human tissues from the same subjects is here reported for the very first time. The current results may be of high importance for the validation of physiologically based pharmacokinetic models, which are being developed for humans. However, further studies on the distribution of the same compounds in the human body are still required.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cellular Senescence in Brain Aging

              Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
                Bookmark

                Author and article information

                Journal
                Environmental Pollution
                Environmental Pollution
                Elsevier BV
                02697491
                July 2023
                July 2023
                : 329
                : 121650
                Article
                10.1016/j.envpol.2023.121650
                37062406
                a6a37ea2-42a3-4c2e-83b2-72cfd6da5015
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article