5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Repeated cocaine treatment decreases whole-cell calcium current in rat nucleus accumbens neurons.

      The Journal of pharmacology and experimental therapeutics
      Animals, Calcium Channel Blockers, pharmacology, Calcium Channels, metabolism, Cocaine, administration & dosage, Dopamine Uptake Inhibitors, Drug Administration Schedule, Male, Membrane Potentials, drug effects, physiology, Neurons, Nucleus Accumbens, Patch-Clamp Techniques, Rats, Rats, Sprague-Dawley, Substance Withdrawal Syndrome

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dopamine D1 receptors within the nucleus accumbens (NAc) are intricately involved in the rewarding effects of cocaine and in withdrawal symptoms after cessation of repeated cocaine administration. These receptors couple to a variety of ion channels to modulate neuronal excitability. Using whole-cell recordings from dissociated adult rat NAc medium spiny neurons (MSNs), we show that, as in dorsal striatal MSNs, D1 receptor stimulation suppresses N- and P/Q-type Ca(2+) currents (I(Ca)) by activating a cAMP/protein kinase A/protein phosphatase (PP) signaling system, presumably leading to channel dephosphorylation. We also report that during withdrawal from repeated cocaine administration, basal I(Ca) density is decreased by 30%. Pharmacological isolation of specific I(Ca) components indicates that N- and R-type, but not P/Q- or L-type, currents are significantly reduced by repeated cocaine treatment. Inhibiting PP activity with okadaic acid enhances I(Ca) in cocaine withdrawn, but not control, NAc neurons, suggesting an increase in constitutive PP activity. This suggestion was supported by a significant decrease in the ability of D1 receptor stimulation and direct activation of cAMP signaling to suppress I(Ca) in cocaine-withdrawn NAc neurons. Chronic cocaine-induced reduction of I(Ca) in NAc MSNs will globally impact Ca(2+)-dependent processes, including synaptic plasticity, transmitter release, and intracellular signaling cascades that regulate membrane excitability. Along with our previously reported reduction in whole-cell Na(+) currents during cocaine withdrawal, these findings further emphasize the important role of whole-cell plasticity in reducing information processing during cocaine withdrawal.

          Related collections

          Author and article information

          Comments

          Comment on this article