8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risk Factors for Multidrug-Resistant Organisms Infection in Diabetic Foot Ulcer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          The aim of this study is to analyze the microbiological characteristics of diabetic foot ulcer (DFU) and drug resistance of multidrug-resistant organisms (MDROs) and to reveal the potential risk factors for MDROs. This provides a basis for early empiric antibiotic treatment.

          Methods

          This study included 348 patients with diabetic foot ulcer in Chu Hsien-I Memorial Hospital & Metabolic Disease Hospital of Tianjin Medical University between May 2020 and November 2021. A total of 475 strains of bacteria were cultured, among which 240 strains were multidrug-resistant bacteria, accounting for 51%. Binary logistic regression was used to analyze risk factors. First, univariate analysis was used to calculate the p value of variables, and then multivariate analysis was conducted for variables with p < 0.1 to analyze independent risk factors. Risk factors with p < 0.05 in multivariable analysis were considered as independent risk factors. The strength of the association was represented by odds ratio and 95% confidence interval.

          Results

          Univariable logistic regression analysis demonstrated that previous hospitalization, previous antibiotic therapy, ulcer size >4cm 2, surgical therapy, D-dimer, and CRP were associated with MDRO infection in patients with DFU. Multivariate logistic regression analysis demonstrated that previous hospitalization (OR = 1.91; 95% CI = 1.11–3.28; p = 0.02), ulcer size >4cm 2 (OR = 1.68; 95% CI = 1.03–2.76; p = 0.04), surgical therapy (OR = 2.14; 95% CI = 1.03–4.47; p = 0.04), and CRP (OR = 1.01; 95% CI = 1.00–1.01; p = 0.03) were independent risk factors for MDROs infection in diabetic foot patients. Drug resistance analysis may indicate that the proportion and drug resistance rate of Acinetobacter baumannii in Tianjin, China, have changed.

          Conclusion

          Previous hospitalization, ulcer size >4cm 2, surgical therapy and CRP were independent risk factors for MDROs infection in diabetic foot patients. Identifying these risk factors can help us identify the high-risk patients of diabetic foot with MDRO infection early. More attention to high-risk patients and more aggressive isolation precautions may reduce the incidence of MDRO infection in diabetic foot patients.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance.

          Many different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided. © 2011 European Society of Clinical Microbiology and Infectious Diseases. No claim to original US government works.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Role of C-Reactive Protein at Sites of Inflammation and Infection

            C-reactive protein (CRP) is an acute inflammatory protein that increases up to 1,000-fold at sites of infection or inflammation. CRP is produced as a homopentameric protein, termed native CRP (nCRP), which can irreversibly dissociate at sites of inflammation and infection into five separate monomers, termed monomeric CRP (mCRP). CRP is synthesized primarily in liver hepatocytes but also by smooth muscle cells, macrophages, endothelial cells, lymphocytes, and adipocytes. Evidence suggests that estrogen in the form of hormone replacement therapy influences CRP levels in the elderly. Having been traditionally utilized as a marker of infection and cardiovascular events, there is now growing evidence that CRP plays important roles in inflammatory processes and host responses to infection including the complement pathway, apoptosis, phagocytosis, nitric oxide (NO) release, and the production of cytokines, particularly interleukin-6 and tumor necrosis factor-α. Unlike more recent publications, the findings of early work on CRP can seem somewhat unclear and at times conflicting since it was often not specified which particular CRP isoform was measured or utilized in experiments and whether responses attributed to nCRP were in fact possibly due to dissociation into mCRP or lipopolysaccharide contamination. In addition, since antibodies for mCRP are not commercially available, few laboratories are able to conduct studies investigating the mCRP isoform. Despite these issues and the fact that most CRP research to date has focused on vascular disorders, there is mounting evidence that CRP isoforms have distinct biological properties, with nCRP often exhibiting more anti-inflammatory activities compared to mCRP. The nCRP isoform activates the classical complement pathway, induces phagocytosis, and promotes apoptosis. On the other hand, mCRP promotes the chemotaxis and recruitment of circulating leukocytes to areas of inflammation and can delay apoptosis. The nCRP and mCRP isoforms work in opposing directions to inhibit and induce NO production, respectively. In terms of pro-inflammatory cytokine production, mCRP increases interleukin-8 and monocyte chemoattractant protein-1 production, whereas nCRP has no detectable effect on their levels. Further studies are needed to expand on these emerging findings and to fully characterize the differential roles that each CRP isoform plays at sites of local inflammation and infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis †.

              Diabetic foot is a severe public health issue, yet rare studies investigated its global epidemiology. Here we performed a systematic review and meta-analysis through searching PubMed, EMBASE, ISI Web of science, and Cochrane database. We found that that global diabetic foot ulcer prevalence was 6.3% (95%CI: 5.4-7.3%), which was higher in males (4.5%, 95%CI: 3.7-5.2%) than in females (3.5%, 95%CI: 2.8-4.2%), and higher in type 2 diabetic patients (6.4%, 95%CI: 4.6-8.1%) than in type 1 diabetics (5.5%, 95%CI: 3.2-7.7%). North America had the highest prevalence (13.0%, 95%CI: 10.0-15.9%), Oceania had the lowest (3.0%, 95% CI: 0.9-5.0%), and the prevalence in Asia, Europe, and Africa were 5.5% (95%CI: 4.6-6.4%), 5.1% (95%CI: 4.1-6.0%), and 7.2% (95%CI: 5.1-9.3%), respectively. Australia has the lowest (1.5%, 95%CI: 0.7-2.4%) and Belgium has the highest prevalence (16.6%, 95%CI: 10.7-22.4%), followed by Canada (14.8%, 95%CI: 9.4-20.1%) and USA (13.0%, 95%CI: 8.3-17.7%). The patients with diabetic foot ulcer were older, had a lower body mass index, longer diabetic duration, and had more hypertension, diabetic retinopathy, and smoking history than patients without diabetic foot ulceration. Our results provide suggestions for policy makers in deciding preventing strategy of diabetic foot ulceration in the future. Key messages Global prevalence of diabetic foot is 6.3% (95%CI: 5.4-7.3%), and the prevalence in North America, Asia, Europe, Africa and Oceania was 13.0% (95%CI: 10.0-15.9%), 5.5% (95%CI: 4.6-6.4%), 5.1% (95%CI: 4.1-6.0%), 7.2% (95%CI: 5.1-9.3%), and 3.0% (95% CI: 0.9-5.0%). Diabetic foot was more prevalent in males than in females, and more prevalent in type 2 diabetic foot patients than in type 1 diabetic foot patients. The patients with diabetic foot were older, had a lower body mass index, longer diabetic duration, and had more hypertension, diabetic retinopathy, and smoking history than patients without diabetic foot.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                07 April 2022
                2022
                : 15
                : 1627-1635
                Affiliations
                [1 ]NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University , Tianjin, 300134, People’s Republic of China
                [2 ]Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University , Tianjin, 300134, People’s Republic of China
                [3 ]Department of Nephropathy, Wang Jing Hospital of China Academy of Chinese Medical Sciences , Beijing, 100102, People’s Republic of China
                [4 ]Graduate School, Tianjin University of Traditional Chinese Medicine , Tianjin, 301617, People’s Republic of China
                Author notes
                Correspondence: Bai Chang, Email changbai1972@126.com
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-0018-2735
                Article
                359157
                10.2147/IDR.S359157
                8999704
                35418765
                a7f79c9a-2d3d-45af-896d-3f2c239d98c1
                © 2022 Liu et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 20 January 2022
                : 28 March 2022
                Page count
                Figures: 0, Tables: 4, References: 36, Pages: 9
                Funding
                Funded by: the National Natural Science Foundation of China;
                This study was supported by the National Natural Science Foundation of China (81973614).
                Categories
                Original Research

                Infectious disease & Microbiology
                diabetic foot ulcer,multidrug-resistant organisms,infection,risk factors,logistic regression analysis

                Comments

                Comment on this article