2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Deciphering the Polygenic Basis of Racial Disparities in Prostate Cancer By an Integrative Analysis of Genomic and Transcriptomic Data

      , ,
      Cancer Prevention Research
      American Association for Cancer Research (AACR)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prostate cancer prevalence in African Americans (AA) is over 1.5 times the prevalence in European Americans (EA). Among over a hundred index risk SNPs for prostate cancer, only a few can be verified using the available AAs' data. Their relevance to the prevalence inequality and other racial disparities has not been fully determined. We investigated this issue by an integrative analysis of five public datasets. We categorized the datasets into two classes. The training class consisted of the datasets generated by three genome-wide association studies. The test class contained the prostate adenocarcinoma data of The Cancer Genome Atlas and the data of African and European super-populations in the 1000-Genome project. The polygenic risk scores (PRS) of test samples for cancer occurrence were calculated according to the effects of genetic variants estimated from the training samples. We obtained the following findings. Africans' PRSs are higher than Europeans' scores (P < 1 × 10−6). AA patients' PRSs are higher than EA patients' scores (P < 3×10−9). The patients with tumors presenting fusion or abnormal expression in ERG and other E26 transformation-specific (ETS) family genes have lower PRSs than the patients without such aberrations (P < 7×10−5). Five tumor progression-related genes have the expression levels being significantly correlated with PRS (FDR < 0.01). Additional simulation analysis shows that the high prostate cancer prevalence in African populations makes it challenging to identify individual risk variants using African men's data. These results implicate that the index risk SNP-based PRS is compatible with the observed racial disparity in prostate cancer prevalence and ETS abnormal cancers may be less heritable compared with other subtypes.

          Prevention Relevance:

          This study reveals the relevance of index risk SNP markers with racial disparities in prostate cancer. The findings also indicate that PRS can be used in prostate cancer subtype prediction.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          PLINK: a tool set for whole-genome association and population-based linkage analyses.

          Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome

            Background RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments. Results We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene. Conclusions RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A global reference for human genetic variation

              The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.
                Bookmark

                Author and article information

                Journal
                Cancer Prevention Research
                American Association for Cancer Research (AACR)
                1940-6207
                1940-6215
                March 01 2022
                March 04 2022
                March 01 2022
                March 04 2022
                : 15
                : 3
                : 161-171
                Article
                10.1158/1940-6207.CAPR-21-0406
                a7fe8b84-74a2-4ed1-a703-97c429c00aa1
                © 2022
                History

                Comments

                Comment on this article