5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Serologic and Molecular Prevalence ofRickettsia helveticaandAnaplasma phagocytophilumin Wild Cervids and Domestic Mammals in the Central Parts of Sweden

      1 , 2 , 3 , 4 , 4 , 1 , 5 , 2
      Vector-Borne and Zoonotic Diseases
      Mary Ann Liebert Inc

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies

          The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rickettsioses as paradigms of new or emerging infectious diseases.

            Rickettsioses are caused by species of Rickettsia, a genus comprising organisms characterized by their strictly intracellular location and their association with arthropods. Rickettsia species are difficult to cultivate in vitro and exhibit strong serological cross-reactions with each other. These technical difficulties long prohibited a detailed study of the rickettsiae, and it is only following the recent introduction of novel laboratory methods that progress in this field has been possible. In this review, we discuss the impact that these practical innovations have had on the study of rickettsiae. Prior to 1986, only eight rickettsioses were clinically recognized; however, in the last 10 years, an additional six have been discovered. We describe the different steps that resulted in the description of each new rickettsiosis and discuss the influence of factors as diverse as physicians' curiosity and the adoption of molecular biology-based identification in helping to recognize these new infections. We also assess the pathogenic potential of rickettsial strains that to date have been associated only with arthropods, and we discuss diseases of unknown etiology that may be rickettsioses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden

              Background Ixodes ricinus is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) spirochaetes, the tick-borne encephalitis virus (TBEV) and other pathogens of humans and domesticated mammals. The results of a previous 1994 questionnaire, directed at people living in Central and North Sweden (Svealand and Norrland) and aiming to gather information about tick exposure for humans and domestic animals, suggested that Ixodes ricinus ticks had become more widespread in Central Sweden and the southern part of North Sweden from the early 1980s to the early 1990s. To investigate whether the expansion of the tick's northern geographical range and the increasing abundance of ticks in Sweden were still occurring, in 2009 we performed a follow-up survey 16 years after the initial study. Methods A questionnaire similar to the one used in the 1994 study was published in Swedish magazines aimed at dog owners, home owners, and hunters. The questionnaire was published together with a popular science article about the tick's biology and role as a pathogen vector in Sweden. The magazines were selected to get information from people familiar with ticks and who spend time in areas where ticks might be present. Results Analyses of data from both surveys revealed that during the near 30-year period from the early 1980s to 2008, I. ricinus has expanded its distribution range northwards. In the early 1990s ticks were found in new areas along the northern coastline of the Baltic Sea, while in the 2009 study, ticks were reported for the first time from many locations in North Sweden. This included locations as far north as 66°N and places in the interior part of North Sweden. During this 16-year period the tick's range in Sweden was estimated to have increased by 9.9%. Most of the range expansion occurred in North Sweden (north of 60°N) where the tick's coverage area doubled from 12.5% in the early 1990s to 26.8% in 2008. Moreover, according to the respondents, the abundance of ticks had increased markedly in LB- and TBE-endemic areas in South (Götaland) and Central Sweden. Conclusions The results suggest that I. ricinus has expanded its range in North Sweden and has become distinctly more abundant in Central and South Sweden during the last three decades. However, in the northern mountain region I. ricinus is still absent. The increased abundance of the tick can be explained by two main factors: First, the high availability of large numbers of important tick maintenance hosts, i.e., cervids, particularly roe deer (Capreolus capreolus) during the last three decades. Second, a warmer climate with milder winters and a prolonged growing season that permits greater survival and proliferation over a larger geographical area of both the tick itself and deer. High reproductive potential of roe deer, high tick infestation rate and the tendency of roe deer to disperse great distances may explain the range expansion of I. ricinus and particularly the appearance of new TBEV foci far away from old TBEV-endemic localities. The geographical presence of LB in Sweden corresponds to the distribution of I. ricinus. Thus, LB is now an emerging disease risk in many parts of North Sweden. Unless countermeasures are undertaken to keep the deer populations, particularly C. capreolus and Dama dama, at the relatively low levels that prevailed before the late 1970s - especially in and around urban areas where human population density is high - by e.g. reduced hunting of red fox (Vulpes vulpes) and lynx (Lynx lynx), the incidences of human LB and TBE are expected to continue to be high or even to increase in Sweden in coming decades.
                Bookmark

                Author and article information

                Journal
                Vector-Borne and Zoonotic Diseases
                Vector-Borne and Zoonotic Diseases
                Mary Ann Liebert Inc
                1530-3667
                1557-7759
                September 2015
                September 2015
                : 15
                : 9
                : 529-534
                Affiliations
                [1 ]Department of Medical Sciences, Unit of Clinical Bacteriology, Uppsala University, Uppsala, Sweden.
                [2 ]Center of Clinical Research, Dalarna, Falun, Sweden.
                [3 ]Department of Clinical Sciences, Division of Reproduction, Swedish University of Agricultural Sciences, Uppsala, Sweden.
                [4 ]Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden.
                [5 ]Department of Medical Sciences, Unit of Infectious Diseases, Uppsala University, Uppsala, Sweden.
                Article
                10.1089/vbz.2015.1768
                a855bfb8-9a3c-416c-828b-12aa81d41987
                © 2015

                https://www.liebertpub.com/nv/resources-tools/text-and-data-mining-policy/121/

                History

                Comments

                Comment on this article