1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ti3C2 MXene quantum dot-encapsulated liposomes for photothermal immunoassays using a portable near-infrared imaging camera on a smartphone.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methods based on the photothermal effect (a common phenomenon in nature) have been widely applied in different fields; however, their application in bioanalysis has lagged behind. Herein, we designed a near-infrared (NIR) photothermal immunoassay for the qualitative or quantitative detection of prostate-specific antigen (PSA) using titanium carbide (Ti3C2) MXene quantum dot (QD)-encapsulated liposomes with high photothermal efficiency. This system involves a sandwich-type immunoreaction and photothermal measurements. Ti3C2 MXene QDs were utilized as innovative photothermal signal beacons and were encapsulated in liposomes for the labeling of the secondary antibody. The assay was carried out by coupling a low-cost microplate with a homemade 3D printed device. Under NIR-laser irradiation, the Ti3C2 MXene QDs converted the light energy into heat, and a shift in temperature corresponding with the analyte concentration was obtained on a handheld thermometer. Under optimal conditions, the Ti3C2 MXene QD-based photothermal immunoassay exhibited a dynamic linear range from 1.0 ng mL-1 to 50 ng mL-1 with a limit of detection of 0.4 ng mL-1 for PSA detection. Also, we constructed portable equipment using a portable near-infrared imaging camera to collect visual thermal data for the semi-quantitative analysis of the target PSA within 3 min. The specificity, reproducibility and accuracy of the photothermal immunoassay were acceptable. Importantly, our strategy opens new opportunities for protein point-of-care (POC) testing and biosecurity diagnostics.

          Related collections

          Author and article information

          Journal
          Nanoscale
          Nanoscale
          Royal Society of Chemistry (RSC)
          2040-3372
          2040-3364
          Sep 07 2019
          : 11
          : 33
          Affiliations
          [1 ] Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province) and State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350108, China. dianping.tang@fzu.edu.cn.
          [2 ] Testing Center, Fuzhou University, Fuzhou 350108, China. tping@fzu.edu.cn.
          Article
          10.1039/c9nr05797h
          31411624
          a86dc422-e298-4a8f-ba13-f2fbe42a9c03
          History

          Comments

          Comment on this article