12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects.

      Circulation
      Animals, Cell Differentiation, Endothelial Cells, cytology, Graft Survival, Heart, physiology, Mesenchymal Stem Cell Transplantation, Mesenchymal Stromal Cells, Muscle Cells, Myocardial Infarction, therapy, Paracrine Communication, Rats, Rats, Inbred F344, Regeneration, Time Factors, Transplantation, Homologous, Ventricular Function, Left

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mesenchymal stem cells (MSCs) have the potential to replace infarct scar, but the long-term effects are unknown. We studied short- and long-term effects of MSC transplantation on left ventricular (LV) function in a rat myocardial infarction model. Saline (n=46) or MSCs labeled with 1,1'-dioctadecyl-3,3,3'3'-testramethylindocarbocyanine perchlorate (DiI; n=49, 2x10(6) cells each) were injected into the scar of a 1-week-old myocardial infarction in Fischer rats. The presence and differentiation of engrafted cells and their effect on LV ejection fraction was assessed. At 4 weeks, LV stroke volume was significantly greater in the MSC-treated group (145+/-9 microL) than in the saline group (122+/-3 microL, P=0.032), and LV ejection fraction was significantly greater in MSC-treated animals (43.8+/-1.0%) than in the saline group (38.8+/-1.1%, P=0.0027). However, at 6 months, these benefits of MSC treatment were lost. DiI-positive cells were observed in the MSC group at 2 weeks and at 3 and 6 months. Expression of the muscle-specific markers alpha-actinin, myosin heavy chain, phospholamban, and tropomyosin was not observed at 2 weeks in DiI-positive cells. At 3 and 6 months, the DiI-positive cells were observed to express the above muscle-specific markers, but they did not fully evolve into an adult cardiac phenotype. Some of the DiI-positive cells expressed von Willebrand factor. Allogeneic MSCs survive in infarcted myocardium as long as 6 months and express markers that suggest muscle and endothelium phenotypes. MSCs improved global LV function at 4 weeks; however, this benefit was transient, which suggests a possible early paracrine effect.

          Related collections

          Author and article information

          Comments

          Comment on this article