Blog
About

0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity and function of multicopper oxidase genes in the stinkbug Plautia stali

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Multicopper oxidase (MCO) genes comprise multigene families in bacteria, fungi, plants and animals. Two families of MCO genes, MCO1 (laccase1) and MCO2 (laccase2), are conserved among diverse insects and relatively well-characterized, whereas additional MCO genes, whose biological functions have been poorly understood, are also found in some insects. Previous studies reported that MCO1 participates in gut immunity and MCO2 plays important roles in cuticle sclerotization and pigmentation of insects. In mosquitoes, MCO2 was reported to be involved in eggshell sclerotization and pigmentation, on the ground that knockdown of MCO2 caused deformity and fragility of the eggshell. Here we identified a total of 7 MCO genes, including PsMCO1 and PsMCO2, and investigated their expression and function in the brown-winged green stinkbug Plautia stali. RNA interference (RNAi) knockdown of MCO genes by injecting double-stranded RNA (dsRNA) into nymphs revealed that MCO2, but not the other 6 MCOs, is required for cuticle sclerotization and pigmentation, and also for survival of P. stali. Trans-generational knockdown of MCO2 by injecting dsRNA into adult females (maternal RNAi) resulted in the production of unhatched eggs despite the absence of deformity or fragility of the eggshell. These results suggested that MCO2 plays an important role in sclerotization and pigmentation of the cuticle but not in eggshell integrity in P. stali. Maternal RNAi of any of the other 6 MCO genes and 3 tyrosinase genes affected neither survival nor eggshell integrity of P. stali. Contrary to the observations in the red flour beetle and the brown rice planthopper, RNAi knockdown of MCO6 (MCORP; Multicopper oxidase related protein) exhibited no lethal effects on P. stali. Taken together, our findings provide insight into the functional diversity and commonality of MCOs across hemipteran and other insect groups.

          Related collections

          Most cited references 33

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.

          Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Male accessory gland secretions: modulators of female reproductive physiology and behavior.

            Secretions of male accessory glands contain a variety of bioactive molecules. When transferred during mating, these molecules exert wide-ranging effects on female reproductive activity and they improve the male's chances of siring a significant proportion of the female's offspring. The accessory gland secretions may affect virtually all aspects of the female's reproductive activity. The secretions may render her unwilling or unable to remate for some time, facilitating sperm storage and ensuring that any eggs laid will be fertilized by that male's sperm. They may stimulate an increase in the number and rate of development of eggs and modulate ovulation and/or oviposition. Antimicrobial agents in the secretions ensure that the female reproductive tract is a hospitable environment during sperm transfer. In a few species the secretions include noxious chemicals. These are sequestered by developing eggs that are thereby protected from predators and pathogens when laid.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Laccases: blue enzymes for green chemistry.

               Sergio Riva (2006)
              Laccases are oxidoreductases belonging to the multinuclear copper-containing oxidases; they catalyse the monoelectronic oxidation of substrates at the expense of molecular oxygen. Interest in these essentially "eco-friendly" enzymes--they work with air and produce water as the only by-product--has grown significantly in recent years: their uses span from the textile to the pulp and paper industries, and from food applications to bioremediation processes. Laccases also have uses in organic synthesis, where their typical substrates are phenols and amines, and the reaction products are dimers and oligomers derived from the coupling of reactive radical intermediates. Here, we provide a brief discussion of this interesting group of enzymes, increased knowledge of which will promote laccase-based industrial processes in the future.
                Bookmark

                Author and article information

                Contributors
                nishiyu0@affrc.go.jp
                t-fukatsu@aist.go.jp
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                26 February 2020
                26 February 2020
                2020
                : 10
                Affiliations
                [1 ]National Agriculture and Food Research Organization (NARO), Institute of Agrobiological Sciences Ohwashi, Tsukuba, 305-8634 Japan
                [2 ]ISNI 0000 0001 2230 7538, GRID grid.208504.b, National Institute of Advanced Industrial Science and Technology (AIST), ; Tsukuba, 305-8566 Japan
                [3 ]ISNI 0000 0001 2151 536X, GRID grid.26999.3d, Department of Biological Sciences, Graduate School of Science, , University of Tokyo, ; Tokyo, 113-0033 Japan
                [4 ]ISNI 0000 0001 2369 4728, GRID grid.20515.33, Graduate School of Life and Environmental Sciences, , University of Tsukuba, ; Tsukuba, 305-8572 Japan
                Article
                60340
                10.1038/s41598-020-60340-8
                7044228
                32103072
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: JSPS KAKENHI Grant
                Award ID: JP16K21613
                Award ID: JP25221107
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized

                evolutionary genetics, entomology

                Comments

                Comment on this article