50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The great downside dilemma for risky emerging technologies

      Physica Scripta
      IOP Publishing

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Fuel gain exceeding unity in an inertially confined fusion implosion.

          Ignition is needed to make fusion energy a viable alternative energy source, but has yet to be achieved. A key step on the way to ignition is to have the energy generated through fusion reactions in an inertially confined fusion plasma exceed the amount of energy deposited into the deuterium-tritium fusion fuel and hotspot during the implosion process, resulting in a fuel gain greater than unity. Here we report the achievement of fusion fuel gains exceeding unity on the US National Ignition Facility using a 'high-foot' implosion method, which is a manipulation of the laser pulse shape in a way that reduces instability in the implosion. These experiments show an order-of-magnitude improvement in yield performance over past deuterium-tritium implosion experiments. We also see a significant contribution to the yield from α-particle self-heating and evidence for the 'bootstrapping' required to accelerate the deuterium-tritium fusion burn to eventually 'run away' and ignite.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Was Agriculture Impossible during the Pleistocene but Mandatory during the Holocene? A Climate Change Hypothesis

            Several independent trajectories of subsistence intensification, often leading to agriculture, began during the Holocene. No plant-rich intensifications are known from the Pleistocene, even from the late Pleistocene when human populations were otherwise quite sophisticated. Recent data from ice and ocean-core climate proxies show that last glacial climates were extremely hostile to agriculture—dry, low in atmospheric CO2, and extremely variable on quite short time scales. We hypothesize that agriculture was impossible under last-glacial conditions. The quite abrupt final amelioration of the climate was followed immediately by the beginnings of plant-intensive resource-use strategies in some areas, although the turn to plants was much later elsewhere. Almost all trajectories of subsistence intensification in the Holocene are progressive, and eventually agriculture became the dominant strategy in all but marginal environments. We hypothesize that, in the Holocene, agriculture was, in the long run, compulsory. We use a mathematical analysis to argue that the rate-limiting process for intensification trajectories must generally be the rate of innovation of subsistence technology or subsistence-related social organization. At the observed rates of innovation, population growth will always be rapid enough to sustain a high level of population pressure. Several processes appear to retard rates of cultural evolution below the maxima we observe in the most favorable cases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Existential Risk Prevention as Global Priority

                Bookmark

                Author and article information

                Journal
                Physica Scripta
                Phys. Scr.
                IOP Publishing
                0031-8949
                1402-4896
                December 01 2014
                December 01 2014
                November 27 2014
                : 89
                : 12
                : 128004
                Article
                10.1088/0031-8949/89/12/128004
                a9638294-91f9-409c-a643-f2ab38afe2ff
                © 2014

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article