37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CAG/CTG repeat expansions cause over 13 neurological diseases that remain without a cure. Because longer tracts cause more severe phenotypes, contracting them may provide a therapeutic avenue. No currently known agent can specifically generate contractions. Using a GFP-based chromosomal reporter that monitors expansions and contractions in the same cell population, here we find that inducing double-strand breaks within the repeat tract causes instability in both directions. In contrast, the CRISPR-Cas9 D10A nickase induces mainly contractions independently of single-strand break repair. Nickase-induced contractions depend on the DNA damage response kinase ATM, whereas ATR inhibition increases both expansions and contractions in a MSH2- and XPA-dependent manner. We propose that DNA gaps lead to contractions and that the type of DNA damage present within the repeat tract dictates the levels and the direction of CAG repeat instability. Our study paves the way towards deliberate induction of CAG/CTG repeat contractions in vivo.

          Abstract

          The expansion of trinucleotide repeats has been linked to several neurodegenerative disorders. Here, the authors show that the CRISPR-Cas9 nuclease induces both expansions and contractions of the repeat region, whereas the nickase leads predominantly to contractions.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease.

          RNA-guided genome editing with the CRISPR-Cas9 system has great potential for basic and clinical research, but the determinants of targeting specificity and the extent of off-target cleavage remain insufficiently understood. Using chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq), we mapped genome-wide binding sites of catalytically inactive Cas9 (dCas9) in HEK293T cells, in combination with 12 different single guide RNAs (sgRNAs). The number of off-target sites bound by dCas9 varied from ∼10 to >1,000 depending on the sgRNA. Analysis of off-target binding sites showed the importance of the PAM-proximal region of the sgRNA guiding sequence and that dCas9 binding sites are enriched in open chromatin regions. When targeted with catalytically active Cas9, some off-target binding sites had indels above background levels in a region around the ChIP-seq peak, but generally at lower rates than the on-target sites. Our results elucidate major determinants of Cas9 targeting, and we show that ChIP-seq allows unbiased detection of Cas9 binding sites genome-wide.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Expanding the Biologist's Toolkit with CRISPR-Cas9.

            Few discoveries transform a discipline overnight, but biologists today can manipulate cells in ways never possible before, thanks to a peculiar form of prokaryotic adaptive immunity mediated by clustered regularly interspaced short palindromic repeats (CRISPR). From elegant studies that deciphered how these immune systems function in bacteria, researchers quickly uncovered the technological potential of Cas9, an RNA-guided DNA cleaving enzyme, for genome engineering. Here we highlight the recent explosion in visionary applications of CRISPR-Cas9 that promises to usher in a new era of biological understanding and control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repeat instability as the basis for human diseases and as a potential target for therapy.

              Expansions of repetitive DNA sequences cause numerous human neurological and neuromuscular diseases. Ongoing repeat expansions in patients can exacerbate disease progression and severity. As pathogenesis is connected to repeat length, a potential therapeutic avenue is to modulate disease by manipulating repeat expansion size--targeting DNA, the root-cause of symptoms. How repeat instability is mediated by DNA replication, repair, recombination, transcription and epigenetics may explain its contribution to pathogenesis and give insights into therapeutic strategies to block expansions or induce contractions.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                09 November 2016
                2016
                : 7
                : 13272
                Affiliations
                [1 ]Center for Integrative Genomics, University of Lausanne , 1015 Lausanne, Switzerland
                Author notes
                Author information
                http://orcid.org/0000-0003-4953-7637
                Article
                ncomms13272
                10.1038/ncomms13272
                5105158
                27827362
                a9b4fbc1-e8d9-4585-ab57-0fe7554d8bac
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 15 June 2016
                : 12 September 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article