23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genotoxic potential generated by biomass burning in the Brazilian Legal Amazon by Tradescantia micronucleus bioassay: a toxicity assessment study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Brazilian Amazon has suffered impacts from non-sustainable economic development, especially owing to the expansion of agricultural commodities into forest areas. The Tangará da Serra region, located in the southern of the Legal Amazon, is characterized by non-mechanized sugar cane production. In addition, it lies on the dispersion path of the pollution plume generated by biomass burning. The aim of this study was to assess the genotoxic potential of the atmosphere in the Tangará da Serra region, using Tradescantia pallida as in situ bioindicator.

          Methods

          The study was conducted during the dry and rainy seasons, where the plants were exposed to two types of exposure, active and passive.

          Results

          The results showed that in all the sampling seasons, irrespective of exposure type, there was an increase in micronucleus frequency, compared to control and that it was statistically significant in the dry season. A strong and significant relationship was also observed between the increase in micronucleus incidence and the rise in fine particulate matter, and hospital morbidity from respiratory diseases in children.

          Conclusions

          Based on the results, we demonstrated that pollutants generated by biomass burning in the Brazilian Amazon can induce genetic damage in test plants that was more prominent during dry season, and correlated with the level of particulates and elevated respiratory morbidity.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Health effects of air pollution.

          The general public, especially patients with upper or lower respiratory symptoms, is aware from media reports that adverse respiratory effects can occur from air pollution. It is important for the allergist to have a current knowledge of the potential health effects of air pollution and how they might affect their patients to advise them accordingly. Specifically, the allergist-clinical immunologist should be keenly aware that both gaseous and particulate outdoor pollutants might aggravate or enhance the underlying pathophysiology of both the upper and lower airways. Epidemiologic and laboratory exposure research studies investigating the health effects of outdoor air pollution each have advantages and disadvantages. Epidemiologic studies can show statistical associations between levels of individual or combined air pollutants and outcomes, such as rates of asthma, emergency visits for asthma, or hospital admissions, but cannot prove a causative role. Human exposure studies, animal models, and tissue or cellular studies provide further information on mechanisms of response but also have inherent limitations. The aim of this rostrum is to review the relevant publications that provide the appropriate context for assessing the risks of air pollution relative to other more modifiable environmental factors in patients with allergic airways disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Impact of Sugar Cane–Burning Emissions on the Respiratory System of Children and the Elderly

            We analyzed the influence of emissions from burning sugar cane on the respiratory system during almost 1 year in the city of Piracicaba in southeast Brazil. From April 1997 through March 1998, samples of inhalable particles were collected, separated into fine and coarse particulate mode, and analyzed for black carbon and tracer elements. At the same time, we examined daily records of children ( 64 years of age) admitted to the hospital because of respiratory diseases. Generalized linear models were adopted with natural cubic splines to control for season and linear terms to control for weather. Analyses were carried out for the entire period, as well as for burning and nonburning periods. Additional models were built using three factors obtained from factor analysis instead of particles or tracer elements. Increases of 10.2 μg/m3 in particles ≥ 2.5 μm/m3 aerodynamic diameter (PM2.5) and 42.9 μg/m3 in PM10 were associated with increases of 21.4% [95% confidence interval (CI), 4.3–38.5] and 31.03% (95% CI, 1.25–60.21) in child and elderly respiratory hospital admissions, respectively. When we compared periods, the effects during the burning period were much higher than the effects during nonburning period. Elements generated from sugar cane burning (factor 1) were those most associated with both child and elderly respiratory admissions. Our results show the adverse impact of sugar cane burning emissions on the health of the population, reinforcing the need for public efforts to reduce and eventually eliminate this source of air pollution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Children's response to air pollutants.

              It is important to focus on children with respect to air pollution because (1) their lungs are not completely developed, (2) they can have greater exposures than adults, and (3) those exposures can deliver higher doses of different composition that may remain in the lung for greater duration. The undeveloped lung is more vulnerable to assault and less able to fully repair itself when injury disrupts morphogenesis. Children spend more time outside, where concentrations of combustion-generated air pollution are generally higher. Children have higher baseline ventilation rates and are more physically active than adults, thus exposing their lungs to more air pollution. Nasal breathing in adults reduces some pollution concentrations, but children are more typically mouth-breathers--suggesting that the composition of the exposure mixture at the alveolar level may be different. Finally, higher ventilation rates and mouth-breathing may pull air pollutants deeper into children's lungs, thereby making clearance slower and more difficult. Children also have immature immune systems, which plays a significant role in asthma. The observed consequences of early life exposure to adverse levels of air pollutants include diminished lung function and increased susceptibility to acute respiratory illness and asthma. Exposure to diesel exhaust, in particular, is an area of concern for multiple endpoints, and deserves further research.
                Bookmark

                Author and article information

                Journal
                Environ Health
                Environmental Health
                BioMed Central
                1476-069X
                2011
                17 May 2011
                : 10
                : 41
                Affiliations
                [1 ]Escola Nacional de Saúde Pública - ENSP, Fiocruz, Rio de Janeiro, CEP: 21041-210, RJ, Brazil
                [2 ]Departamento de Biologia Celular e Genética, UFRN, Natal, CEP: 59072-970, RN, Brazil
                [3 ]Departamento de Patologia, USP, São Paulo, CEP: 01246-903, SP, Brazil
                [4 ]Departamento de Física Aplicada, USP, São Paulo, CEP: 05508-900, SP, Brazil
                [5 ]Departamento de Patologia, UFF, Niterói, CEP: 24033-900, RJ, Brazil
                Article
                1476-069X-10-41
                10.1186/1476-069X-10-41
                3118318
                21575274
                a9be0aec-d620-44be-8a03-1dcbd4ca9356
                Copyright ©2011 Sisenando et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 January 2011
                : 17 May 2011
                Categories
                Research

                Public health
                Public health

                Comments

                Comment on this article