17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Data Quality Influences Observed Links Between Functional Connectivity and Behavior

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A growing field of research explores links between behavioral measures and functional connectivity (FC) assessed using resting-state functional magnetic resonance imaging. Recent studies suggest that measurement of these relationships may be corrupted by head motion artifact. Using data from the Human Connectome Project (HCP), we find that a surprising number of behavioral, demographic, and physiological measures (23 of 122), including fluid intelligence, reading ability, weight, and psychiatric diagnostic scales, correlate with head motion. We demonstrate that "trait" (across-subject) and "state" (across-day, within-subject) effects of motion on FC are remarkably similar in HCP data, suggesting that state effects of motion could potentially mimic trait correlates of behavior. Thus, head motion is a likely source of systematic errors (bias) in the measurement of FC:behavior relationships. Next, we show that data cleaning strategies reduce the influence of head motion and substantially alter previously reported FC:behavior relationship. Our results suggest that spurious relationships mediated by head motion may be widespread in studies linking FC to behavior.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Network modelling methods for FMRI.

          There is great interest in estimating brain "networks" from FMRI data. This is often attempted by identifying a set of functional "nodes" (e.g., spatial ROIs or ICA maps) and then conducting a connectivity analysis between the nodes, based on the FMRI timeseries associated with the nodes. Analysis methods range from very simple measures that consider just two nodes at a time (e.g., correlation between two nodes' timeseries) to sophisticated approaches that consider all nodes simultaneously and estimate one global network model (e.g., Bayes net models). Many different methods are being used in the literature, but almost none has been carefully validated or compared for use on FMRI timeseries data. In this work we generate rich, realistic simulated FMRI data for a wide range of underlying networks, experimental protocols and problematic confounds in the data, in order to compare different connectivity estimation approaches. Our results show that in general correlation-based approaches can be quite successful, methods based on higher-order statistics are less sensitive, and lag-based approaches perform very poorly. More specifically: there are several methods that can give high sensitivity to network connection detection on good quality FMRI data, in particular, partial correlation, regularised inverse covariance estimation and several Bayes net methods; however, accurate estimation of connection directionality is more difficult to achieve, though Patel's τ can be reasonably successful. With respect to the various confounds added to the data, the most striking result was that the use of functionally inaccurate ROIs (when defining the network nodes and extracting their associated timeseries) is extremely damaging to network estimation; hence, results derived from inappropriate ROI definition (such as via structural atlases) should be regarded with great caution. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multi-task connectivity reveals flexible hubs for adaptive task control

            Extensive evidence suggests the human ability to adaptively implement a wide variety of tasks is preferentially due to the operation of a fronto-parietal brain network. We hypothesized that this network’s adaptability is made possible by ‘flexible hubs’ – brain regions that rapidly update their pattern of global functional connectivity according to task demands. We utilized recent advances in characterizing brain network organization and dynamics to identify mechanisms consistent with the flexible hub theory. We found that the fronto-parietal network’s brain-wide functional connectivity pattern shifted more than other networks’ across a variety of task states, and that these connectivity patterns could be used to identify the current task. Further, these patterns were consistent across practiced and novel tasks, suggesting reuse of flexible hub connectivity patterns facilitates adaptive (novel) task performance. Together, these findings support a central role for fronto-parietal flexible hubs in cognitive control and adaptive implementation of task demands generally.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A positive-negative mode of population covariation links brain connectivity, demographics and behavior

              We investigated the relationship between individual subjects’ functional connectomes and 280 behavioral and demographic measures, in a single holistic multivariate analysis relating imaging to non-imaging data from 461 subjects in the Human Connectome Project. We identified one strong mode of population co-variation; subjects were predominantly spread along a single “positive-negative” axis, linking lifestyle, demographic and psychometric measures to each other and to a specific pattern of brain connectivity.
                Bookmark

                Author and article information

                Journal
                Cerebral Cortex
                Oxford University Press (OUP)
                1047-3211
                1460-2199
                September 2017
                September 01 2017
                August 22 2016
                September 2017
                September 01 2017
                August 22 2016
                : 27
                : 9
                : 4492-4502
                Affiliations
                [1 ]Departments of Neurology, Washington University School of Medicine at Washington University, St. Louis, MO 63110, USA
                [2 ]Mallinckrodt Institute of Radiology, Washington University School of Medicine at Washington University, St. Louis, MO 63110, USA
                [3 ]Department of Neuroscience, Washington University School of Medicine at Washington University, St. Louis, MO 63110, USA
                [4 ]Department of Neuroscience at University of Padua, Padua 35122, Italy
                Article
                10.1093/cercor/bhw253
                6410500
                27550863
                aa151b9c-4087-4c40-969e-9e760b80b086
                © 2016
                History

                Comments

                Comment on this article