4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Chromatin fiber allostery and the epigenetic code

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Two-component signal transduction.

          Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            On the nature of allosteric transitions: A plausible model

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive analysis of the chromatin landscape in Drosophila

              Summary Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which impact cell differentiation, gene regulation and other key cellular processes. We present a genome-wide chromatin landscape for Drosophila melanogaster based on 18 histone modifications, summarized by 9 prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNaseI hypersensitivity, GRO-seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements, and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions, and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.
                Bookmark

                Author and article information

                Journal
                Journal of Physics: Condensed Matter
                J. Phys.: Condens. Matter
                IOP Publishing
                0953-8984
                1361-648X
                February 18 2015
                February 18 2015
                January 07 2015
                : 27
                : 6
                : 064114
                Article
                10.1088/0953-8984/27/6/064114
                ab1486bc-e9f5-4d8c-84ac-b93752d08bcd
                © 2015

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article